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ABSTRACT 

Frequency Effects in the Processing of Morphologically Complex Turkish Words 

 

This is an empirical study that examines how morphologically simple and complex 

words in Turkish are represented in the brains of native speakers. Two experiments 

are reported that use various “frequency of occurrence” metrics as independent 

variables. The secondary findings of the study are that (a) frequency is an extremely 

complex concept, especially in the case of an agglutinating language like Turkish; (b) 

different frequency measures are highly correlated; (c) frequency distributions are 

uneven at several levels; (d) the overwhelming majority of grammatically possible 

forms are never used even in a large corpus; (e) in an agglutinating language like 

Turkish, morphology has a deep impact even at sub-lexical levels such as the 

distribution of letter-ngrams; (f) conducting psycholinguistics experiments online 

rather than in a laboratory environment is a feasible option; (g) letter shape does not 

have an effect on word recognition accuracy; (h) morphologically complex Turkish 

words are processed two times more slowly than simple words, suggesting that suffix 

sequences add a significant workload to the recognition process. The three main 

findings of the experiments, on the other hand, are that (a) more frequent simple 

words are processed faster than less frequent simple words, thus replicating a well-

established finding in a typologically different language; (b) complex words are 

probably processed from left to right, and, most importantly, (c) the human brain can 

use suffix sequences to recognize complex words, thus suggesting that there exist 

mental representations for frequently occurring suffix sequences, probably in 

addition to mental representations for individual suffixes.  
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ÖZET 

Biçimbilimsel Bakımdan Karmaşık Türkçe Kelimelerin İşlenmesinde 

Frekans Etkileri 

 

Bu çalışmada, biçimbilimsel açıdan basit ve karmaşık Türkçe kelimelerin, anadili 

Türkçe olan kişilerin beyninde ne şekilde kayıtlı olduğu, çeşitli sıklık ölçütlerinin 

bağımsız değişken olarak kullanıldığı iki çevrimiçi deney aracılığıyla incelenmiştir. 

Çalışmanın ikincil bulguları şunlardır: (a) özellikle Türkçe gibi bitişimli dillerde, 

“sıklık” son derece karmaşık bir kavramdır; (b) farklı sıklık ölçütleri arasında yüksek 

korelasyon mevcuttur; (c) sıklık dağılımları her düzeyde dengesizdir; (d) dilbilgisine 

uygun kelimelerin ezici çoğunluğu büyük bir derlemde dahi hiç kullanılmamaktadır; 

(e) Türkçe gibi bitişimli bir dilde, harf dizilerinin dağılımı gibi kelime-altı alanlar 

üzerinde dahi biçimbilimsel yapının yoğun etkileri gözlenmektedir; (f) ruhdilbilimi 

deneylerinin laboratuar ortamı yerine çevrimiçi ortamda uygulanması başarılı 

sonuçlar vermektedir; (g) harflerin büyük veya küçük olmasının, kelime tanımadaki 

başarı oranı üzerinde etkisi yoktur; (h) biçimbilimsel açıdan karmaşık Türkçe 

kelimeler, basit kelimelere kıyasla iki kat yavaş işlenmektedir, bu ise kelime 

sonlarındaki ek dizilerinin kelime işleme sürecine büyük bir yük getirdiğini 

göstermektedir. Çalışmanın üç temel bulgusu ise şunlardır: (a) çok çeşitli diller için 

uzun yıllardır bilindiği üzere, daha sık kullanılan basit kelimeler, daha az kullanılan 

basit kelimelerden daha hızlı işlenmektedir; (b) karmaşık kelimeler muhtemelen 

sağdan-sola veya tek parça olarak değil, soldan-sağa işlenmektedir, ve en önemlisi, 

(c) insan beyni karmaşık kelimeleri işlerken ek dizilerini kullanabilmektedir, bu ise, 

sık kullanılan eklerin yanısıra, sık kullanılan ek dizileri için de ayrı zihinsel kayıtlar 

bulunduğunu düşündürmektedir.  
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CHAPTER 1 

INTRODUCTION 

 

1.1  Overview 

According to the “computational theory of mind”, the human brain is a 

computational system that runs algorithms on representations (Markman, 2006; 

Rescorla, 2015). It creates, stores, accesses and processes representations as it 

interacts with the external world through the sensory systems, but it also creates, 

stores, accesses and processes non-sensory representations as it interacts with other 

parts of itself, i.e. with existing mental representations elsewhere in the brain. 

Understanding how the brain represents knowledge and what kinds of algorithms 

operate on those representations has been one of the main objectives of the cognitive 

sciences (Friedenberg & Silverman, 2011). 

Language is one of the most widely studied human faculties in the scientific 

effort to understand the nature of mental representations and processes. Cognitive 

science studies language strictly as a mental phenomenon rather than as an abstract, 

ideal system detached from its biological realization in the human brain. Studying 

language is hoped to "offer a window into cognitive function, providing insights into 

the nature, structure and organization of thoughts and ideas", because it is assumed 

that language “reflect[s] certain fundamental properties and design features of the 

human mind” (Evans & Green, 2006). 

The present study is an inquiry into how the human brain processes language. 

More specifically, it tries to shed light on how words are represented in the mind and 

how these representations are accessed during the act of reading (visual word 

recognition). Even more specifically, it tries to understand how morphologically 

simple and complex words in Turkish are represented in the minds of native speakers 
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of Turkish, and how these representations are accessed during visual word 

recognition.  

Since mental processes are largely unconscious, introspection is of limited 

value when studying the mind (Nisbett & Wilson, 1977, p. 231). No amount of 

introspection can reveal, for instance, that the signals coming in from the left visual 

fields of both eyes are initially processed by the primary visual cortex at the back of 

the brain’s right hemisphere, or that language is primarily processed in the left 

hemisphere. Thus, hypotheses about the mental representation and processing of 

language can be better examined by using experimental methods (Hasson & Giora, 

2007, p. 302). This is why this study follows the tradition of experimental 

psychology, and especially the tradition of “mental chronometry”. 

“Mental chronometry” refers to the systematic measuring of 

subjects’ reaction times in perceptual and motor tasks, for the purpose of 

reaching conclusions about the nature of mental operations (Meyer, Osman 

& Irwin, 1988, p. 3). It is one of the oldest and most widely-used behavioral 

methods in experimental and cognitive psychology for understanding the 

workings of the human mind. The earliest studies go back more than 130 

years: In 1885, the American psychologist James McKeen Cattell “pasted 

letters on a revolving drum … and determined at what rate they could be 

read aloud”. Cattell found, among other things, that “it takes about twice as 

long to read … words which have no connexion as words which make 

sentences, and letters which have no connexion as letters which make 

words” (Cattell, 1886, p. 64, but also see Donders, 1969). These were the 

beginnings of psychology as an experimental science. 
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The type of behavioral experiment used in this study is known as a “lexical 

decision task”. Subjects are shown strings of letters, usually on a computer screen, 

and are asked to decide, as quickly and accurately as possible, whether or not the 

letters constitute a valid word, by pressing either the “yes” button or the “no” button. 

The time between the presentation of the stimulus and the subject’s pressing one of 

the two buttons is known as “response time” or “reaction time” (RT), and is the most 

widely used dependent variable, usually measured at millisecond accuracy. 

Stimuli consist of valid words (like desen ‘pattern’ or cüzdan ‘wallet’), non-

words designed in accordance with the purpose of the experiment (like *cüzdar or 

*fodtsz), and a considerable number of “fillers”, usually words from different parts-

of-speech (like geliyoruz ‘we are coming’ or hızla ‘quickly’), whose sole purpose is 

to prevent the subjects from guessing the purpose of the experiment. Although 

interesting inferences can be made based on the response times of the non-words as 

well, the experimenter is primarily interested in the response times of the real words. 

In the two-condition experiments used in this study, the independent variable 

has two levels: low and high. Half of the real words belong to the low-level 

condition, and the other half to the high-level condition. For example, if the 

independent variable is word frequency, half of the real words used in the experiment 

are low-frequency words, and the other half are high-frequency words. Except for the 

independent variable, all variables which the experimenters think might affect the 

dependent variable are kept constant. In this way, changes in the dependent variable 

are hoped to be exclusively caused by changes in the independent variable. 

All subjects of the experiments in this study have been exposed to all stimuli 

in the two frequency groups. This is known as a “within-subjects” or “repeated-

measures” design, and has the considerable advantage of eliminating the variability 
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arising from individual differences between subjects, as will be explained in more 

detail below. 

The independent variables used in this study are various word frequency 

measures. There exists an extensive and long-standing literature showing that 

frequency of occurrence is a strong predictor of reaction time in word recognition 

experiments (Howes & Solomon, 1951; Forster & Chambers, 1973; Taft, 1979; 

Grainger, 1990; Meunier & Segui, 1999; Taft, 2004, among many others). There 

exists a statistically significant negative correlation between word frequency and 

reaction time. In other words, more frequent words are recognized more quickly (and 

more accurately). 

However, as will be seen below, frequency is a surprisingly complex concept. 

Take the English word institutionalized, for instance. We can simply count how 

many times this letter-string occurs in a large-scale text collection like the British 

National Corpus (BNC)1. It turns out that institutionalized occurs 157 times in BNC. 

But this can either be the simple past of the verb institutionalize, or an attributive 

adjective as in the phrase institutionalized violence. Already, we have three different 

frequency measures, one for the past-tense form, one for the adjective form, and one 

for both forms in the aggregate. Moreover, the word institutionalized is clearly 

related to the verb institutionalize, the adjective institutional, the noun institution, 

and finally the verb institute. One could claim that, when a person is exposed to the 

word-form institutionalized, his/her brain also activates these related base-forms, 

                                                           
1 A “corpus” is a large-scale collection of text or speech samples in a given language (pl. “corpora”). 

A corpus serves as a source of naturalistic data that can be used to discover statistical regularities, test 

hypotheses, write grammars, compile dictionaries or other reference materials, train machine learning 

systems, etc. The British National Corpus, on the other hand, is “a 100-million-word collection of 

samples of written and spoken language from a wide range of sources, designed to represent a wide 

cross-section of British English, both spoken and written, from the late twentieth century”. It is 

available at http://www.natcorp.ox.ac.uk. 
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from which the word-form has been derived. Are their frequencies updated, too? 

Maybe we should define a system of “diminishing activation” based on the number 

of steps involved in the derivation, i.e. assume that a single activation of 

institutionalized results in, say, 0.8 activations of institutionalize, 0.6 activations of 

institutional, 0.4 activations of institution, etc., whatever such partial activations may 

mean. Or maybe we should define a single aggregate metric for all of them 

(activation of the “institute family”). But shall we simply follow the chain of 

derivation until we reach the bare root (institutionalized > institutionalize > 

institutional > institution > institute) and stop there, or does the family also include 

other “children” of the ultimate bare root (e.g. institutionalization)? Moving on to 

inflection, when a person is exposed to the inflected form institutionalizes, does 

his/her brain activate only that surface-form, only the base-form institutionalize, or 

both? The situation is even more complicated in the case of Turkish, which is the 

language used in this study. 

The present study attempts to contribute to existing literature in three ways: 

(a) to propose a general notation for describing various frequency measures in a 

principled way, (b) to test if the frequency effect, which has been demonstrated so 

many times in the literature, also exists in a typologically very different language, 

and (c) to experimentally test existing models of morphological processing in a 

morphologically complex language. By defining various lexical frequency measures 

and by manipulating them in controlled experiments, we hope to shed light on the 

architecture of the linguistic representations and processes in the human brain. 
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1.2  Research questions and hypotheses 

This study aims to experimentally investigate the effects of frequency on the time it 

takes subjects to visually recognize morphologically simple and complex Turkish 

words, and the accuracy of such recognition. In this context, the following three 

research questions will be addressed: 

Research Question 1: Does frequency affect response times in the visual 

recognition of bare Turkish nouns?2 

Research Question 2: Does frequency affect response times in the visual 

recognition of morphologically complex Turkish nouns? 

Research Question 3: Are morphologically complex Turkish words parsed 

from left to right, from right to left, or as a single chunk? 

The following hypotheses are derived from these research questions: 

Hypothesis 1: Everything else being equal, the time it takes a native speaker 

of Turkish to visually recognize a bare Turkish noun decreases as the frequency of 

that noun increases. 

Hypothesis 2: Everything else being equal, the time it takes a native speaker 

of Turkish to visually recognize a morphologically complex Turkish noun decreases 

as the frequency of the suffix-template (defined in Section 3.2.1) increases. 

Hypothesis 3: Everything else being equal, the time it takes a native speaker 

of Turkish to reject a non-word that starts with a meaningless letter-sequence but 

ends with a valid sequence of suffixes (e.g. gansien+lerinizin) is shorter than the 

time it takes a native speaker of Turkish to reject a non-word that starts with a valid 

root but ends with meaningless letters (e.g. bıldırcın+ganfirmaş). 

                                                           
2 Although the existence of the frequency effect has been demonstrated countless times in the 

literature, it has not been thoroughly and exhaustively investigated for Turkish, as will be discussed in 

Section 2.4 of the literature review. 
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1.3  Experimental findings 

Two online experiments have been conducted to address these research questions and 

hypotheses: 

The first experiment addresses the first research question, and tests the 

corresponding first hypothesis. It finds clear evidence that, everything else being 

equal, more frequent noun roots are processed significantly faster than less frequent 

noun roots, thus replicating a basic finding that has been demonstrated for a large 

number of languages since the 1950s. 

The second experiment addresses the second and third research questions, and 

tests the corresponding second and third hypotheses. It finds that, everything else 

being equal, complex-words that contain high-frequency suffix sequences are 

processed significantly faster than complex-words that contain low-frequency suffix 

sequences. This finding supports the hypothesis that there exist separate mental 

representations for frequently occurring suffix sequences (not individual suffixes but 

entire suffix bundles such as lAş+DIr+Il+mIş). This is in line with “usage-based” 

accounts of grammar, which claim that linguistic structure emerges from language 

use, i.e. from repeated exposure to certain constructions over time (Bybee, 2011, p. 

69). 

Another finding of the second experiment is that novel complex word-forms 

such as orangutanlaştırmamalıyız ‘we should not orangutanize’ are processed step-

by-step, starting with the root and then proceeding with the suffixes, as suggested by 

Hankamer (1989), rather than being processed as a single chunk, or from right-to-

left, starting with the rightmost suffix and then proceeding with the other suffixes 

and the root. 
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Several other, more general and/or informal findings have been derived from 

the preparatory quantitative work reported in Chapter 3, which will be discussed in 

Chapter 5.  
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CHAPTER 2 

LITERATURE REVIEW AND LINGUISTIC BACKGROUND 

 

The scientific literature on language and the human brain is extensive, 

multidisciplinary, relatively young, and thus full of theoretical and practical divides, 

terminological issues, and contradictory results, as will be discussed below. 

Methodological diversity is also striking: There are neurolinguistic studies 

that try to understand the neurological bases of language, using brain imaging 

techniques like functional magnetic resonance imaging (fMRI) and 

electroencephalography / event-related potentials (EEG/ERP); more traditional 

psycholinguistic studies (like the present study) that use behavioral experiments such 

as lexical decision, masked priming, progressive demasking, and naming to measure 

response times; modelling efforts that computationally or otherwise try to simulate 

the processing of language in a biologically plausible way. 

This literature review is limited to the basic phenomena and methods 

discussed in this study: (a) visual word recognition (and especially the recognition of 

morphologically complex words) as the object of study, (b) frequency of occurrence 

as the independent variable, and (c) lexical decision as the experimental task. 

“Visual word recognition” refers to a cognitive task where a human subject is 

visually exposed to a string of written symbols (as opposed to a sequence of sounds, 

which is the field of auditory word recognition) and recognizes those symbols as a 

valid lexical item. Note that this includes a wide range of cognitive processes from 

the low-level visual perception of letter shapes, to the higher-level (e.g. phonological, 

morphological and semantic) processes required to retrieve the mental entry for the 

relevant lexical item, its internal structure and meaning. Also note that the above 

definition is limited to the relatively more artificial task of recognizing single words 
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presented in isolation, and thus excludes the relatively more realistic, everyday task 

of processing words in context (i.e. sentence processing). 

The first three sections below summarize the literature on morphological 

processing, frequency effects and lexical decision, respectively. The fourth section 

provides a brief introduction to the Turkish language, with a special emphasis on its 

morphology. Equipped with this background knowledge, the fifth and last section 

offers a review of existing theoretical and empirical literature on the mental 

representation and processing of Turkish words.  

 

2.1  Morphological processing 

“Morphological processing” refers to the mental representation and processing of 

morphologically complex words, i.e. words composed of more than one morpheme, 

such as normalization, worldwide or international. The main dividing issue is if there 

exists a separate mental entry for each and every word, whether simple or complex 

(the “full-listing hypothesis”), or if roots and affixes are stored separately and are 

only combined during comprehension or production based on abstract morphological 

rules (the “decomposition hypothesis”). Three positions have been defended in the 

literature, including these two extremes, and a family of several positions in-between 

(Schreuder et al., 1990): 

According to the more extreme versions of the “full-listing / whole-word 

representation / direct route” hypothesis (e.g. Butterworth, 1983; Seidenberg, 1987), 

words are directly represented and accessed in their entirety, regardless of whether 

they are morphologically simple or complex. In other words, there is a separate 

mental representation for each word-form (e.g. one entry each for norm, normal, 
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normalize, normalizes, normalizing, normalization, etc.), and word recognition is 

simply a search/look-up process that does not involve any further computation. 

According to the more extreme versions of the “decomposition / full-parsing” 

hypothesis (e.g. Taft & Forster, 1975; MacKay, 1978), on the other hand, only roots, 

affixes and morphological rules governing their combination are mentally 

represented, and word-forms are computed on-the-fly, through the application of the 

rules to those roots and affixes. In other words, there exists a single base-form entry 

for, say, norm, and the full-form normalize, for example, is recognized after being 

processed by the “morphological parser”, which identifies the constituents norm, -al 

and –ize, and computes the meaning of the complex word-form using the meanings 

of the three parts that have been identified (Baayen, Dijkstra, & Schreuder, 1997). 

Finally, “dual-route models” (e.g. Caramazza, Laudanna, & Romani,  1988) 

are not a separate family of models but a range of intermediate positions between the 

two extremes described above. In dual-route models, both full-forms and 

roots/affixes/rules can be mentally represented. Thus, the full-form normalize, for 

example, can be represented both as normalize and as norm+al+ize. 

The question that arises at this point is whether there exist both full-form and 

decomposed representations for all words regardless of their morphological structure, 

or whether some words prefer the full-form/direct route, while others use the 

decomposition/parsing route. Several positions have been defended in the literature: 

Pinker (1991) and Pinker & Prince (1994), for instance, argue that 

phonologically and semantically regular and transparent forms are not stored as full-

forms but are always processed on the basis of the morphemes that constitute them. 

Opaque complex forms that have at least one idiosyncratic property, on the other 

hand, have to be stored in their entirety. They further argue that inflected words tend 
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to be stored in decomposed form, while derived words are more prone to being 

stored as full-forms, since inflectional processes are more regular and transparent 

than derivational processes. Other researchers, however, have empirically 

demonstrated that even the most regular and transparent inflected forms can be 

stored as full-forms, especially if they are used frequently (Stemberger & 

MacWhinney, 1986). According to the Augmented Addressed Morphology model 

(Burani & Caramazza, 1987; Caramazza, Laudanna & Morani 1988; Laudanna & 

Burani, 1985), for example, frequently-occurring words are processed directly via 

their full-form entry, while the decomposition / parsing route serves as a “backup” 

that is only used for rare or novel complex words that are regular and transparent. 

Taft (1979), on the other hand, proposes that there exists an obligatory parsing step 

prior to lexical access, where the parser initially, and blindly, attempts to separate 

any incoming letter-string into constituent morphemes, regardless of whether or not 

the string actually contains more than one morpheme (Baayen, Dijkstra, & 

Schreuder, 1997). 

Finally, there are “parallel dual-route” models that use the “race” metaphor to 

conceptualize the respective roles of full-form storage and decomposition in visual 

word recognition. According to these models, there exist both full-form and 

decomposed representations for all word-forms, and two parallel and independent 

processes engage in a “race” with each other using these representations: The full-

form/direct route uses the full-form representation to access the phonological and 

semantic representation of the word directly, while the decomposition/parsing route 

uses morphemes and morphological rules to attempt a combinatorial interpretation 

(e.g. Frauenfelder & Schreuder, 1992; Schreuder & Baayen, 1995). 
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Which of these models of morphological processing does empirical evidence 

support? What are the uncontroversial empirical facts? The picture does not seem to 

be bright in this regard: According to Amenta & Crepaldi (2012), for example, 

although a considerable amount of experimental data resulting from more than sixty 

years of research is available, the debate has become rather inconclusive, especially 

during the last ten years. New models are being proposed without clearly falsifying 

existing models, and as a result, knowledge on morphological processing does not 

progress in a cumulative fashion (“which means that . . . it does not progress at all”, 

the authors add). Amenta & Crepaldi (2012) think that the basic reason for this state 

of affairs is that we still do not have a comprehensive list of uncontroversial 

empirical facts (Amenta & Crepaldi, 2012, p. 1).  

 

2.2  Frequency effects 

In its simplest form, “frequency effect” refers to the fact that more frequent words 

are recognized faster. For example, a high-frequency word such as dog is, on the 

average, recognized faster than a low-frequency word such as doe, “everything else 

being equal”.3 This effect is probably the most well-known phenomenon in 

psycholinguistic literature, with the earliest empirical studies going back more than 

sixty years (e.g. Howes & Solomon, 1951). 

                                                           
3 As in many other fields of science, it is extremely difficult to make sure that “everything else is 

equal”. In a rather humorous article that warns researchers that “we may not be able to run any 

psycholinguistic experiments at all in 1990”, Cutler (1981) makes the following remark: 

 

Consider a judicious psycholinguist constructing materials for an experiment comparing 

nouns, verbs and adjectives. Ideally he would like to create matched triples of an 

unambiguous noun with an unambiguous verb and an unambiguous adjective. They should 

be matched, as we have seen, on both surface and combined frequency. Naturally they should 

be matched on length. At this point it is already clear to the experimenter that the task is 

probably impossible; and he has not even begun to consider further variables on which they 

might be matched, such as association, age of acquisition, autobiographical memory, 

categorizability, concreteness, digram frequency, imagery, goodness, letter frequency, 

number of meanings, orthographic regularity, meaningfulness, emotionality and recognition 

threshold. (Cutler, 1981, p. 68) 
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Frequency effects have been used extensively as a diagnostic tool to 

understand the mental representation and processing of language: They have been 

demonstrated for a large number of languages (e.g. Arabic, Dutch, English, Finnish, 

French, German, Hebrew, Italian, Korean, Russian), and using a variety of 

experimental tasks (e.g. lexical decision, priming, masked priming, progressive 

demasking, naming), independent variables (e.g. the frequency of surface-forms, 

base-forms, family members, orthographic neighbors, syllables, ngrams), and 

dependent variables (e.g. response time, eye-movement duration, 

electrophysiological brain responses) (Segui, Mehler, Frauenfelder, & Morton, 1982; 

Baayen, Milin & Ramscar, 2016). 

The facilitatory effect of frequency on perception is probably not limited to 

the domain of language, and may also exist in unrelated domains such as color 

perception or event recall. In Broadbent’s words, “the fact that common words are, 

other things being equal, more easily perceived is perhaps only a special case of the 

general influence of probability on perception” (Broadbent, 1967, p. 1). 

 

2.2.1  “What’s in a name?” 

Why does the literature on probability and perception almost exclusively focus on 

the recognition of words if frequency effects are not limited to the domain of 

language? There are several reasons: 

First of all, “unlike other types of stimuli like visual images, it is easy to 

quantify the probability of occurrence of words. . . [Words] thus provide a 

convenient special tool for investigating the general question of probabilistic effects 

in perception” (Broadbent, 1967, p. 1). 
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Secondly, although it looks simple at first sight, a single written word is an 

astonishingly complex artifact that can be analyzed, and quantified, at a large number 

of intrinsic and extrinsic levels: size, shape, contour, letter features, uniqueness point, 

surface frequency, base frequency, ngram frequency, number of letters, number of 

phonemes, number of syllables, number of morphemes, polarity, emotional content, 

imageability, family size, family frequency, neighborhood size, neighborhood 

frequency, age of acquisition, number of synonyms, number of senses, collocates, 

visual recognition time, visual recognition accuracy (this list is partially based on 

Rubin, 1980, and probably does not exhaust all possibilities). 

Finally, the mental recognition of a word activates several types of associated 

mental representations at several levels including semantics, phonology, 

orthography, prosody, pragmatics and syntax, and is thus a suitable object of inquiry 

for studying the overall architecture of the mind (Seidenberg & Mclelland, 1989). 

 

2.2.2  Defining frequency 

Existing literature on word frequency is largely based on English and other 

morphologically impoverished languages, and therefore contains only a few, basic 

definitions of frequency, which prove inadequate in the case of an agglutinating 

language like Turkish, as will be seen in Section 3.2.2. Furthermore, existing 

frequency terms involve overlaps and omissions, and are in many cases used by 

researchers without even being defined. The following sub-headings critically 

discuss existing frequency measures in the literature: 
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2.2.2.1  Surface frequency 

This is the most basic and uncontroversial frequency measure, and simply counts 

how many times a word-form occurs, exactly as it appears in the text, regardless of 

its internal structure, if any. For example, to compute the surface frequency of the 

complex Turkish word-form denizdekiler ‘those at sea’, one simply counts how 

many times the letter-sequence _d-e-n-i-z-d-e-k-i-l-e-r_ occurs in a certain corpus. 

Note that this does not include occurrences of the related base-form deniz ‘sea’ or 

more complex forms like denizdekilerle ‘with those at sea’. Only the surface-form 

denizdekiler is included. 

The terms “whole-word frequency” (e.g. Alegre & Gordon, 1999; Niswander, 

Pollatsek, & Rayner, 2000) and “word-form frequency” (e.g. Ford, Davis, & 

Marslen-Wilson, 2010; Keuleers, Brysbaert, & New, 2010) appear to be synonyms. 

 

2.2.2.2  Base frequency 

This is the most important family of measures in terms of the processing of 

morphologically complex words, and variously refers to the number of times the base 

/ root / stem / lemma of a word-form (and sometimes also all inflected forms or even 

all forms whether inflectional, derivational or compound) occurs in a given corpus. 

Unfortunately, the literature is full of nearly synonymous and partially 

overlapping definitions. For example, if one adopts the definition in Taft (1979) 

(“total frequency of the stem plus all inflected forms”), the base frequency of agrees 

would be the surface frequency of the base-form agree plus the surface frequencies 

of agrees, agreed, agreeing, etc. If one adopts the definition in Ford, Davis, & 

Marslen-Wilson (2010) (“the whole-form frequency of the base”), on the other hand, 

the base frequency of agrees would only include the surface frequency of the base-
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form agree. Finally, if one adopts the definition in Vannest, Newport, Newman, & 

Bavelier (2011) (“total frequency of all the words containing a given base 

morpheme”), the base frequency of agrees would be the sum of the surface 

frequencies of agree, agrees, agreed, agreeing, agreeable, agreement, disagree, etc. 

“Stem frequency” (e.g. Schreuder & Baayen, 1997), “root frequency” (e.g. 

Vannest & Boland, 1999) “cumulative stem frequency” (e.g. Baayen, Dijkstra, & 

Schreuder, 1997), “cumulative root frequency” (e.g. Giraudo, & Grainger, 2000), 

“cumulative morpheme frequency” (e.g. Ford, Marslen-Wilson & Davis, 2003), 

“base morpheme frequency” (e.g. Ford, Davis, & Marslen-Wilson, 2010), “lemma 

frequency” (e.g. Solomyak, & Marantz, 2010), and “cluster frequency” (e.g. Alegre, 

& Gordon, 1999) appear to be closely-related and partially-overlapping terms, but a 

detailed definition of each of them will not be attempted here. 

 

2.2.2.3  Family size and family frequency 

The (morphological) “family” of a stem is the set of all words obtained from that 

stem through derivation or compounding (see, for example, Schreuder & Baayen, 

1997). For example, the family of the stem book would include, among many others, 

the derived forms bookmark, textbook, bookish, and unbook (the literature is not clear 

on whether the stem book itself, or inflected forms like bookmarks, textbooks, 

unbooking are to be included in the family). 

 Based on this definition, the “family size” of a stem is the number of words in 

that stem’s family. For example, if we assume that bookmark, textbook, bookish, and 

unbook are the only derived forms of the stem book, the family size of book would 

be equal to four. Similarly, the “family frequency” of a stem is the total frequency of 

all words in that stem’s family. In other words, the family frequency of the stem book 
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would be the total surface frequencies of bookmark, textbook, bookish, and unbook. 

As can be seen, family size is a type-based measure, while family frequency is token-

based. 

 Family frequency is sometimes referred to as “cumulative family frequency” 

(e.g. Schreuder & Baayen, 1997). 

 

2.2.2.4  Neighborhood size and neighborhood frequency 

The “(orthographic) neighborhood” of a word is the set of all other words that can be 

obtained from the first word through one or more orthographic manipulations such as 

adding, substituting or deleting a letter or swapping the positions of two letters (see, 

for example, Coltheart, Davelaar, Jonasson, & Besner, 1977; Andrews, 1992; Sears, 

Hino & Lupker, 1995).4 For example, assuming that we allow only a single 

substitution or deletion and ignore other possible manipulations, or repetitions of the 

same manipulation, the neighborhood of the word start would be the set {tart, smart, 

stare, stark}. Parallel to the above definitions of family size and family frequency, 

the “neighborhood size” of start would thus be equal to four, and its “neighborhood 

frequency” would be the total surface frequencies of tart, smart, stare, and stark. 

Once again, the literature is not clear on whether inflected forms such as tarts, 

stared, and staring are to be included. 

 

2.2.3  Types of frequency effects 

Having defined various frequency measures, we now turn to a brief discussion of the 

frequency effects demonstrated in the literature using these measures.  

                                                           
4 This is closely related to the concept “Levehnstein distance”, which quantifies the similarity between 

two strings, and is equal to the number of deletions, insertions, or substitutions required to transform 

the first string into the second string. 
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2.2.3.1  Surface-frequency effect 

This is the simplest form of frequency effect, since it ignores the internal structures 

of words and solely focuses on the actual word-forms that occur on the surface. 

Earlier theories of word recognition assumed that each word, whether simple or 

complex, was represented as a separate atomic entity (Ford, Davis, & Marslen-

Wilson, 2010, p. 117). 

Although there is not much to say on the surface frequency effect per se, 

except that it is the simplest possible form of a frequency effect and was the first 

such effect to be demonstrated in the literature, the picture becomes interesting when 

it is combined with the other frequency effects discussed in subsequent sections. 

 

2.2.3.2  Base-frequency effects 

Although the literature is inconclusive in several regards, a large number of studies 

agree that certain morphologically-motivated frequency measures (as opposed to, or 

in addition to, the simple surface frequency of the actual word-form) have an effect 

on response times in visual word recognition tasks. For example, in one of the most 

influential studies in the field, Taft (1979) finds that, everything else being equal, the 

time it takes to recognize a word-form that contains a certain root decreases as the 

total frequency of all word-forms that contain the same root (“base frequency”) 

increases. Taft describes his reasoning as follows: 

 

If an inflected word (e.g., likes) were recognized by stripping off the suffix 

“s” and by then locating the lexical entry for its stem (like), then there would 

be no lexical entry represented as the inflected word (likes). Rather, “likes,” 

“liking,” and “liked” would all be accessed through a single entry, namely, 

“like”. The effect of this on frequency would be that the frequency of the 

lexical entry “like” would be the summed frequency of “like,” “likes,” 

“liking,” and “liked,” [referred to as “base frequency”] This is the single-

entry model. . .  
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The separate-entry model . . . would say that “like,” “likes,” “liking,” 

and “liked” are accessed through separate lexical entries. According to this 

model, the frequency influencing the recognition time to “likes” will be the 

frequency of “likes” alone, and the frequency influencing recognition time to 

“like” will be the frequency of “like” alone. 

. . . For example, the words “sized” and “raked” both have a frequency 

of 4 according to Kučera and Francis (1967) and constitute a matched pair. 

However, the base frequency of the two words of a pair differed markedly. 

The frequency of “sized” + “size” + “sizes” + “sizing” is 154, while the 

frequency of “raked” + “rake” + “rakes” + “raking” is only 15. Therefore, if 

the single-entry model is correct, words like “sized” should be recognized 

more quickly than words like “raked,” since base frequency should influence 

lexical decision times. If, however, the separate-entries model . . . is correct, 

there should be no difference in response times to “sized” and “raked,” since 

they are matched on surface frequency. (Taft, 1979, pp. 267-268) 

 

The existence of this “base-frequency effect” is assumed to show that the 

human brain uses morphemes as effective processing units in the recognition of 

complex words. In other words, there must be some abstract internal representation 

that combines all word-forms derived from the same root into a single family and 

computes a single frequency value for the entire family rather than (or in addition to) 

separate frequency values for each individual word-form (also see Murrel & Morton, 

1974). Given that it has been replicated many times in the literature, all models of 

morphological processing must explain the base-frequency effect. 

 

2.2.3.3  Family size and family frequency effects 

Schreuder & Baayen (1997) demonstrate that family frequency (which they define as 

“the summed frequencies of the formations in the morphological family”) does not 

affect response time in a series of lexical decision, progressive demasking and 

subjective frequency experiments. Family size (i.e. the number of items in the 

morphological family), on the other hand, is found to be inversely related to speed of 

recognition in a lexical decision task that uses monomorphemic nouns. In other 

words, everything else being equal, words with a large family (e.g. book, whose 
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family members include booklet, bookish, bookcase, bookshelf, phonebook, 

bookstore, among many others) are recognized faster than words with a small family 

(e.g. hook, whose only other family member seems to be unhook) (Schreuder & 

Baayen, 1997, p. 118). 

Evidence shows that the family size effect is semantic in nature: Schreuder & 

Baayen (1997) report that the family size effect they have identified in a lexical 

decision task disappears when the “progressive demasking” task is used instead. 

Progressive demasking is an experimental technique that deals with the very early, 

pre-lexical stages of visual recognition. The authors thus conclude that the family 

size effect “arises at more central, post-identification stages of lexical processing”, 

rather than the relatively earlier, mainly visual stages of the process. They also 

observe that the negative correlation between family size and response time is 

strengthened when semantically opaque members are removed from the family size 

counts, thus supporting the hypothesis that semantic transparency lies at the root of 

the family size effect. This hypothesis is also supported by evidence from Hebrew 

(del Prado Martín et al., 2005) and Finnish (del Prado Martín, Bertram, Häikiö, 

Schreuder & Baayen, 2004). 

 

2.2.3.4  Neighborhood size and neighborhood frequency effects 

“Neighborhood effect” refers to an interaction between the neighborhood size or 

neighborhood frequency of a word on the one hand, and the word’s recognition time 

on the other hand. These effects were initially identified by Coltheart, Davelaar, 

Jonasson & Besner (1977), who defined the “orthographic neighborhood” (a.k.a 

“Coltheart’s N”) of a word as the set of “all other words of the same length that can 

be generated by changing just one letter to another, preserving letter positions” 
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(Grainger, 1990, p. 229). The authors found that non-words with more neighbors 

took longer to reject in a lexical decision task, but did not find any effect on response 

times to actual words. Andrews (1992), in contrast, found that words with large 

neighborhoods were responded to faster than words with small neighborhoods. 

The literature is inconclusive as to the existence, direction, size, and reasons 

of neighborhood-size and neighborhood-frequency effects. Assuming that the 

neighborhood-frequency effect is driven by semantics, this inconclusiveness is 

probably caused by the fact that semantic factors are not as easily quantifiable, and 

thus cannot be as easily controlled for, as other lexical parameters. 

 

2.3  Lexical decision 

“Lexical decision” is an experimental task that has been used innumerable times in 

psycholinguistics literature. In a lexical decision experiment, a subject is visually 

exposed to a sequence of letters on a computer screen, and is asked to decide, as 

quickly and accurately as possible, if the letter sequence presented on the screen is a 

valid word or not, and to press the ‘yes’ button if the letters make up a word, and the 

‘no’ button if not. 

 The stimuli consist of actual words selected in accordance with the objectives 

of the experiment, non-words that may or may not resemble actual words, and a 

number of fillers aimed at concealing the purpose of the experiment. Response time, 

usually measured at millisecond accuracy, is assumed to reflect the “mental 

accessibility” of the relevant word (Hasson & Giora, 2007, p. 303), thus providing 

insights into the mental organization of language. 

Although it has been used extensively since the 1950s, the lexical decision 

task has certain weaknesses: 
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There is some evidence that the lexical decision task “exaggerates” the effect 

of frequency on response time. Balota & Chumbley (1984), for example, report the 

results of three experiments where they compare the impact of, among other factors, 

word frequency on performance in three different word recognition tasks (category 

verification, lexical decision, and pronunciation), using the same set of stimuli. They 

reach the following conclusion: 

The relationship of the lexical variables to reaction time varied significantly 

with the task within which the words were embedded. In particular, the effect 

of word frequency was minimal in the category verification task, whereas it 

was significantly larger in the pronunciation task and significantly larger yet 

in the lexical decision task. It is argued that decision processes having little to 

do with lexical access accentuate the word-frequency effect in the lexical 

decision task and that results from this task have questionable value in testing 

the assumption that word frequency orders the lexicon, thereby affecting time 

to access the mental lexicon. (Balota & Chumbley, 1984, p. 340) 

 

Baayen (2014) mentions the following major weaknesses: (1) The lexical 

decision task is “a metalinguistic task far removed from normal comprehension”. 

This is because, when reading an actual text, the reader naturally assumes that all 

strings are real words. Hence, normal reading does not involve any lexical decision 

task. Furthermore, response time data from lexical decision experiments is 

contaminated by several non-lexical processes such as motor processes required to 

press the buttons. 

(2) In a lexical decision task, words are presented in isolation. However, 

words always occur in context in normal tasks. 

(3) The choice of non-words and fillers significantly affects the results. 

(4) Response time tells us nothing about the time-course of events during 

reading. It just gives the aggregate time it takes the subject to complete the task 

(Baayen, 2014, p. 1). 



24 
 

Despite these drawbacks, Baayen predicts that lexical decision “will become 

more instead of less popular in the coming years”, “as psychologists have discovered 

crowd sourcing and have developed apps for smartphones that can easily harvest 

millions of lexical decisions” (Baayen, 2014, p. 18). 

 

2.4  Background on Turkish 

Before starting to discuss the literature on the mental representation and processing 

of Turkish words, this section provides brief information on Turkish, and especially 

its morphology. 

Turkish is an agglutinating language with a complex morphology. Word 

formation, in terms of both inflection and derivation, is almost exclusively 

accomplished through suffixation, resulting in long word-forms that can in some 

cases only be expressed by a large number of words in analytic languages like 

English (Göksel & Kerslake, 2005, p. 43): 

gör-üş-tür-ül-me-yecek-miş-siniz 

see-RECIP-CAUS-PASS-NEG-FUT-NARR-A2PL5 

‘I’ve been told that you will not be allowed to see each other.’ 

 

Nominal morphology is complex as well: 

yasa-laş-tır-ıl-ma-sı-n-dan6 

law-BECOME-CAUS-PASS-INF-P3SG-ABL 

‘from its being made into law’ 

 

                                                           
5 See Appendix 1 for a complete list of suffixes and their properties. 
6 When the possessive/compound marker -(s)I is followed by the ablative marker -DAn, an additional -

n- appears between the two suffixes, which is an irregular change (see Göksel & Kerslake p. 46). 
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Although morphologically simpler forms occur more frequently as can be 

seen in Appendix H, examples like the above are not exotic peculiarities of the 

language: The suffix sequence BECOME-CAUS-PASS-INF-P3SG-ABL, for example, 

occurs 8,597 times (around 17 per million) in the BOUN Corpus defined below. 

Two additional salient characteristics of Turkish are consonant alternation 

and vowel harmony. These phonological processes are relevant for the purposes of 

this study because the resulting orthographic changes affect the visual-word-

recognition experiments designed here. Before describing these phonological 

processes, let us briefly describe the relevant properties of Turkish vowels and 

consonants: 

Vowels in Turkish allow a three-way categorization, in terms of the height of 

the tongue, the roundedness of the lips and the frontness of the tongue (see Figure 1). 

 

 

 

 

 

 

 

 

Figure 1.  Vowel features 

 

In Table 1, the eight consonants that are relevant for the purposes of the 

present study are categorized in terms of voicing: 
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Table 1.  Four Voiceless Consonants and their Voiced Counterparts 

Voiceless Voiced 

ç c 

k g 

p b 

t d 

 

There are five cases where the addition of a suffix to a stem results in an 

orthographic change in the stem7:  

(1) Some stem-final voiceless consonants (see Table 1) become voiced: dert 

‘trouble’ → derdim ‘my trouble’.  

(2) Some stem-final consonants get doubled: hat ‘line’ → hattın ‘of the line’. 

(3) Some high vowels disappear: alın ‘forehead’ → alnım ‘my forehead’. 

(4) Some stem-final k’s become ğ: delilik ‘madness’ → deliliğe ‘to madness’ 

(5) Some stem-final a, e, u or ü’s become ı or i: ağla ‘cry’ → ağlıyordum ‘I 

was crying’ 

Vowel harmony, on the other hand, can be described as follows: 

(6) High vowels copy their frontness and roundedness features from the 

vowel in the preceding syllable, while back vowels copy their frontness features from 

the vowel in the preceding syllable: boz → bozuldu and öp → öpüldü, ez → ezildi 

and, aç → açıldı. 

Apart from a few exceptions8, suffixes in Turkish can be classified as “A-

type” or “I-type”. An I-type suffix contains high vowels which get their frontness 

and roundedness features from the preceding vowel in accordance with the fronting 

                                                           
7 There are two additional types of consonant alternation, but these are not described here since they 

do not result in any orthographic change. See, for example, Göksel & Kerslake (2005), p. 14 for 

details. 
8 See Göksel & Kerslake, 2005, p. 24. 
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and rounding harmonies described above. The genitive suffix -(n)In, for instance, is 

an I-type suffix. An A-type suffix, on the other hand, contains unrounded and non-

high vowels which get their frontness feature from the preceding vowel in 

accordance with fronting harmony. The plural marker -lAr, for instance, is an A-type 

suffix. 

An A-type suffix prevents the vowels u and ü from surfacing in all 

subsequent suffixes. This phenomenon will be referred to as “blocking” below. For 

example, in the word gör-se-ydi-niz ‘if you had seen’, the A-type conditional suffix –

sA blocks the allomorph -ydü of the subsequent suffix -(y)dI and the allomorph -nüz 

of the subsequent suffix -nIz.9 Similarly, in the word sor-sa-ydı-nız ‘if you had 

asked’, the A-type conditional suffix –sA blocks the allomorph -ydu of the 

subsequent suffix -(y)dI and the allomorph -nuz of the subsequent suffix -nIz.10 

 

2.5  Relevant work on Turkish 

Equipped with the brief linguistic background in Section 2.4, this section offers an 

overview of existing work that theoretically or empirically discusses the mental 

representation and processing of Turkish words, with a special emphasis on the 

representation and processing of morphologically complex words. The review begins 

with two important theoretical contributions by Hankamer (1989) and Frauenfelder 

& Schreuder (1992), and then proceeds to empirical work by various authors. 

Hankamer (1989) discusses the full-listing vs. decomposition issue described 

in Section 2.1, and claims that “all versions of the [full-listing hypothesis] are 

                                                           
9 An “allomorph” is a phonological/orthographic variant of a morpheme. For example, the Turkish 

plural marker -lAr is realized on the surface either as -ler or -lar, depending on the last vowel of the 

stem (e.g. at ‘horse’ → atlar ‘horses’ vs. et ‘meat’ → etler ‘meats’). 
10 For additional details on the morphology, phonology and orthography of Turkish, the reader is 

referred to the following grammars: Göksel & Kerslake, 2005; Banguoğlu, 1974. 
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untenable as hypotheses about speakers of human languages in general”. His 

counter-argument, based on the morphological complexity of Turkish, is very 

simple: The morphology of Turkish can generate 1,830,248 forms from a single verb 

root, and 9,192,472 forms from a single noun root. Assuming that an average 

educated speaker knows 20,000 noun roots and 10,000 verb roots, the full-listing 

hypothesis requires more than 200 billion entries to represent all possible word-

forms. Based on a calculation of the total storage capacity of the human brain, 

Hankamer (1989) concludes that, storing the full-forms of so many words would 

only be possible if the brain was “dedicated to such storage and nothing else 

whatever”! Thus, in a language like Turkish, parsing must be involved in word 

recognition, “not just for rare or unfamiliar forms (unless one wants to call the 

majority of words occurring in ordinary text rare and unfamiliar)” (Hankamer, 1989, 

p. 403-404). 

A serious problem with this argument is that it does not take into account the 

“sparsity” phenomenon discussed in Section 3.4.8. There may be millions of possible 

suffix combinations and billions of root-suffix combinations, but, as will be 

empirically demonstrated below, only a few thousand of them are used with any 

serious frequency. This means that those few thousand combinations that are used 

relatively frequently can very well have their full-form representations in the brain.  

Hankamer (1989) also rejects any mechanism based on right-to-left parsing, 

which starts by stripping suffixes off the end of the word-form, to finally arrive at the 

root, and claims that the root must be recognized before suffixes are recognized. If 

parsing proceeds from right to left, “the set of stems determined by a suffix is always 

very large, and not necessarily even finite”. If parsing proceeds from left to right, on 

the other hand, the number of possible suffixes that can be combined with the stem is 
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finite, very small, and decreases at every step (Hankamer, 1989, p. 402). Based on 

the computational “wastefulness” of a right-to-left parsing algorithm, Hankamer 

(1989) concludes that morphological parsing must proceed from left to right, at least 

in an agglutinating language like Turkish. 

In another important theoretical contribution, Frauenfelder & Schreuder 

(1992) discuss the issue of (morphological) productivity in word recognition, with 

frequent references to Hankamer (1989), and thus to the productivity of the 

morphology of Turkish. The paper summarizes several prominent models of word 

recognition, and discusses how they deal with the issue of productivity and the 

processing of word-forms that the speaker has never encountered before, and also 

how they explain the “morpheme frequency effects”, which have been demonstrated 

many times in the literature. 

According to Frauenfelder & Schreuder (1992), in an agglutinating language 

with a rich morphology and a transparent phonology, of which Turkish is a textbook 

example (Anderson, 1988, quoted in Frauenfelder & Schreuder, 1992), the speaker is 

constantly exposed to novel combinations that have never been encountered before. 

In such a language, the decomposition/parsing route (as opposed to the full-

listing/direct route) would be expected to “win the race” in the processing of most 

morphologically complex word-forms, “because they are made up of morphemic 

combinations that occur rarely” (Frauenfelder & Schreuder, 1992, p. 180). The 

authors make an interesting suggestion at this point, which has been one of the 

inspirations behind the second experiment designed for this study: 

. . . it is possible that combinations of roots and affixes that a listener 

encounters frequently could get a separate access representation. 

Consequently, a single word form might be recognized through the 

cooperative efforts of the direct [i.e. full-listing] route and the parser [i.e. the 

decomposition route]. The frequently co-occurring roots plus affixes 

[emphasis added] would be recognized by the direct route, and the rest of the 
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word [emphasis added] by the parser that combines the results of the direct 

route with the remaining morphemes [emphasis added] to be parsed. 

(Frauenfelder & Schreuder, 1992, p. 180) 

 

The relevance of these two papers to the present study is clear: They 

specifically refer to the morphology of Turkish in their effort to “[constrain] 

psycholinguistic models of morphological processing and representation”. More 

importantly, they make testable predictions and invite researchers in the field to 

conduct “careful experimental research [to] resolve these questions” (Hankamer, 

1989, p. 405). 

The second experiment designed for the present study is an initial attempt to 

respond to this invitation. In fact, all word-forms used in Experiment 2 are “rare and 

unfamiliar” in the extreme: none of them occurs even once in a 283-million-word 

corpus. Thus, there cannot be any mental representation for these word-forms in the 

brains of most participants, at least before they finish the experiment. The 

experiment tests, among other things, how morphologically complex word-forms that 

have never been encountered before are processed by native speakers of Turkish. As 

a secondary issue, it also tries to understand if parsing proceeds from left to right as 

Hankamer (1989) suggests. 

Having discussed two important theoretical papers, we now turn to empirical 

studies related to the mental processing of Turkish words: 

Gürel (1999) tests the full-listing and decomposition hypotheses discussed in 

Hankamer (1989) and Frauenfelder & Schreuder (1992) using a lexical decision task 

involving morphologically simple and complex Turkish words. The two research 

questions Gürel addresses are (1) “to what extent does lexical access of 

multimorphemic words in Turkish involve morphological decomposition?”, and (2) 
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“will all possible substrings of a word be parsed in word recognition?” (Gürel, 1999, 

p. 220). 

The paper reaches the following conclusions: 

Not all multimorphemic words are accessed in a decomposed form in 

Turkish. Words with frequent suffixes seem to be accessed through a whole-

word access procedure. Depending on the frequency of the suffix, a word can 

be accessed via the direct access route or the parsing route. (Gürel, 1999, p. 

223) 

 

However, the experiment presented in this paper involves certain 

methodological problems that might cast doubt on the validity of these conclusions: 

(1) Although the experiment was conducted in 1999, word frequencies were 

obtained from a list of frequency counts published 39 years before the experiment 

(Pierce, 1960). Considering the speed with which language use can change over 

time11, this puts into question the validity of the frequency values used in the study, 

and thus any conclusions that can be derived from it. 

(2) According to Gürel (1999), the frequency counts in Pierce (1960) only 

contain the frequencies of bare roots, and the aggregate frequencies of suffixes 

regardless of where they occur. As a result, there is no way of knowing the surface 

frequencies of the complex word-forms used in the experiment. In other words, the 

independent variable of the experiment is in fact not the thing it purports to be 

(surface frequency of the complex form), but something different (total frequency of 

the relevant root). 

                                                           
11 Since large-scale corpus studies showing changes in the frequencies of Turkish words over time are 

not available, at least to our knowledge, we will try to demonstrate how word usage can change over 

time using the Google nGram Viewer at books.google.com/ngrams and the two similarly-structured 

English words accumulator and computer: Between 1960 and 1999, the year Pierce collected the 

frequency counts and the year Gürel conducted the experiment, the frequency of the English word 

accumulator dropped from 1.8 pmw (per million words) to 0.7 pmw (a 61% decrease), while the 

frequency of the word computer increased from 19 pmw to 130 pmw (a 584% increase). 
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(3) As mentioned by Gürel, “nondecomposable words of three to four 

syllables in Turkish are generally of low frequency. Therefore matching these items 

with one-suffix words for frequency was not possible” (Gürel, 1999, p. 221). In other 

words, an important confounding variable was not controlled for. 

(4) The experiment uses inflected nouns containing the locative, ablative and 

plural markers, and their combinations. Given that there are 98 suffixes in Turkish 

(see Appendix A), it is not clear why these three markers have been selected, and 

what unintended consequences this selection might have in terms of the phonology, 

orthography and semantics of the language. 

(5) Word frequencies are not provided. Thus, it is impossible to know to what 

extent the “high-frequency” words and suffixes used in the experiment differ from 

the “low-frequency” words and suffixes in terms of frequency. 

(6) The stimuli used in the experiment are also not provided. Hence, it is 

impossible to independently judge if stimulus selection was performed in a random 

and unbiased manner. 

In a similar study conducted fourteen years after Gürel (1999), Gürel & 

Uygun (2013) discuss similar issues, this time with reference to “variability in the 

use of second-language morphology”. Since second-language learning is beyond the 

scope of this study, we will only briefly mention the results reported by the authors, 

and discuss methodological issues. Gürel & Uygun, (2013) reach the following 

conclusion, among others: 

It appears that in highly inflected languages like Turkish, for the sake of 

computational efficiency, complex forms are accessed via a direct [i.e. full-

listing] route whenever possible. The extent of native-like performance of the 

advanced learners implies that full-listing can be accomplished after a certain 

degree of proficiency is attained in the [second language]. (Gürel & Uygun, 

2013, p. 131) 
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The methodological problems mentioned for Gürel (1999) apply to this paper 

as well. 

In a closely related article on “recognizing morphologically complex words in 

Turkish”, Durgunoğlu (2003)  tests the left-to-right parsing hypothesis of Hankamer 

(1989), and more specifically its “counter-intuitive prediction that morphologically 

complex words should be recognized faster than matched simple words”. Applying 

word completion and word correction tasks to a group of children, the author 

observes that “morphologically [complex] forms . . . were completed or corrected 

just as accurately as morphologically simple forms. . .”, and concludes that “although 

some prefix stripping and searching the full list of morphemes may be a useful 

strategy in languages with more manageable morphological structures such as 

English, in the highly agglutinating language of Turkish, a left-to-right 

computational strategy seems to be the mode of operation” (Durgunoğlu, 2003, p. 

89). 

The paper involves some methodological problems: (a) all subjects in the 

experiment are children, meaning that the results cannot be generalized to the 

population of native speakers as a whole; and (b) the dependent variable of the 

experiment is the accuracy of a rather unorthodox paper-and-pencil word correction 

and completion task, meaning that the results cannot be compared to existing studies 

in the literature, and also cannot be used to decide whether parsing in Turkish 

proceeds from left to right or from right to left.   

In an interesting article that inspired the second experiment designed for this 

study, along with Frauenfelder & Schreuder (1992), Durrant (2013) discusses 

whether the complex inflectional patterns of Turkish can be described as 

“formulaic”, where “formulaicity” refers to “the insight that some linguistic 
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sequences which could potentially be analyzed into smaller units are, for one reason 

or another, better treated as wholes” (Durrant, 2013, p. 1). According to this view, 

any sequence of linguistic elements can become a formula “if it occurs so frequently 

that some form of independent storage in long-term memory is cognitively more 

efficient than creating the sequence from scratch each time it is needed” (Goldberg, 

2006, quoted in Durrant, 2013). Durrant (2013) claims that, given the complexity of 

its morphology, inflected Turkish words are a good candidate for being processed in 

a formulaic manner. 

The ideas presented in Durrant (2013) are closely related to “usage-based 

grammar”, which treats grammar as a set of cognitive representations that emerge 

over time, from one’s day-to-day experience with language. Bybee (2011) 

summarizes this view as follows: 

“The use of the same sounds, words, and patterns over thousands of usage-

events has an impact on the cognitive storage and processing of linguistic 

experience that gives language its structure. As a result, then, linguistic 

structure is emergent from language use”. (Bybee, 2011, p. 69) 

 

To test the hypothesis that Turkish words are processed in a formulaic 

manner, Durrant (2013) compiles a “personal corpus” consisting of 765 texts totaling 

374,590 words, taken from seven newspapers the author was personally exposed to 

between November 2009 and May 2010, and calculates the base frequencies of all 

words (i.e. the total frequency of all words that contain a given stem). He also 

calculates the frequencies of sequences made up of three to four morphemes, which 

he calls “morphemic bundles” (see the closely related concept of “template bundles” 

defined in Section 3.2.2.1). 

In full agreement with Zipf (1949) and the results of the present study, 

Durrant (2013) discovers that there is a small number of very high-frequency 
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complex words and morphemic bundles, and a large number of very low-frequency 

complex words and morphemic bundles. He suggests that this Zipfian distribution 

“fits comfortably within the dual-route processing model put forward for Finnish by 

Niemi et al. (1994)” (Durrant, 2013, p. 30). Based on these findings, Durrant (2013) 

concludes that “particular repeated patterns . . . might in some cases emerge as 

independently-represented entities, but would most likely exist within networks of 

associations with other morphological patterns . . . and with particular lexical roots. . 

.” (Durrant, 2013, p. 31). 

Although Durrant (2013) is an “exploratory” survey that does not empirically 

test if morphemic bundles have psychological reality, it is in our view an important 

first step towards understanding the processing of complex words in Turkish and 

similar languages. 

Finally, for the sake of completeness, let us mention, in passing, a few studies 

that are only indirectly related to the issues discussed in the present study: 

Kırkıcı & Clahsen (2013) report a series of experiments investigating the 

morphological processing of inflectional and derivational words in native and non-

native speakers of English, German and Turkish, and reach the following conclusion: 

“Adult native speakers . . . demonstrated efficient morphological priming 

effects for regularly inflected word forms [but that] this was not the case for 

L2 learners of these languages. For derivational processes, on the other hand, 

. . . [native] speakers showed the same significant morphological priming 

effects for productive derivational processes. . . Unlike for regular inflection, 

however, derived word forms also yielded significant masked priming effects 

for L2 learners. . .” (Kırkıcı & Clahsen, 2013, p. 787) 

  

In a master’s thesis presented to the cognitive science department of Middle 

East Technical University, Özer (2010) uses a picture naming task to investigate 

morphological priming effects in three types of Turkish nominal compounds. She 

finds “clear evidence for morphological priming effects, which are distinct from 
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phonological effects and comparatively stronger”. According to Özer, this result 

supports processing models based on decomposition. 

In a master’s thesis presented to the same department, Eren (2014) examines 

the effect of stem frequency and stem length on eye movement-parameters while 

reading (a) uninflected stems (e.g. istasyon ‘station’), (b) words with the single 

inflectional suffix -lAr (e.g. istasyonlar ‘stations’), and (c) words with a longer 

sequence of inflectional suffixes (e.g. istasyonlardakilerden ‘from those at the 

stations’). The experiments show that both the frequency and length of the 

uninflected stem influences gaze durations. More specifically, first-pass gaze 

duration and total gaze duration were longer for the long and low-frequency words 

than the short and high-frequency words. However, first-fixation duration in words 

with inflectional suffixes was shorter in longer words than in shorter words” (Eren, 

2014, p. iv). 

Finally, in a master’s thesis presented to the department of English Language 

Teaching of Middle East Technical University in the same year, Gacan (2014) 

examines how native speakers of Turkish process derivationally complex word-

forms in their native language and in English as a second language. The masked 

priming experiments conducted as part of this study use the transparent, frequent and 

productive attributive suffix -lI and the privative suffix -sIz, as well as the 

corresponding English suffixes -ful and -less. Gacan (2014) reports “similar priming 

effects for L1 Turkish and the high proficiency L2 English group” and concludes that 

these findings support decompositional models of word recognition in the native and 

second-language morphological processing of derived words. 

This concludes the review of relevant literature. Several important aspects of 

word recognition that have been widely discussed in the literature have not been 
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included here, since they are only indirectly related to the objectives of the present 

study. These include the purely visual processing of the letters that make up a word 

(orthographic processing), the timing of the sub-processes involved in visual word 

recognition and the interactions between them (temporal sequence), the question 

whether morphological parsing is obligatory or optional, and the question if 

morphology is a phenomenon with a real neurological basis or simply an 

epiphenomenon that emerges from the interaction between the orthographic and 

semantic levels.  



38 
 

CHAPTER 3 

PREPARATORY WORK 

 

An unusual amount of preparatory work had to be done in order to design and 

implement the two lexical decision experiments reported in this study. This is mainly 

because the quantitative resources required for properly selecting the experimental 

stimuli and defining and quantifying independent variables and control variables 

were largely absent. Moreover, the methodological problems observed in existing 

literature have indicated that strict design decisions must be adopted in advance. 

Finally, the terminological problems described in Section 2.2.2 and the inadequacy 

of existing frequency definitions for an agglutinating language like Turkish have 

urged the development of a general notation for defining various measures of 

frequency. This chapter describes the steps of this large-scale preparatory work. 

 

3.1  Design decisions  

Four experimental design decisions have been made in advance with a view to 

maximizing the validity and reliability of results. 

 

3.1.1  Principled stimulus selection 

As pointed out by Forster (2000) and Baayen (2014), many experimental studies fail 

to select their experimental stimuli in a random and unbiased manner. Researchers 

often select, or refrain from selecting, experimental stimuli based on their own 

knowledge of the language, and intuitions about which stimuli would work, and 

which would not. In Baayen’s words, “the consequences of non-random stimulus 

selection is, from a statistical perspective, disastrous” (Baayen, 2014, p. 4). In a 



39 
 

similar vein, Clark (1973) advises researchers to “sample language by systematic, 

repeatable procedures” (Clark, 1973, p. 350). 

This is why the present study makes a considerable effort to select stimuli in a 

principled way, based purely on mathematical descriptions, i.e. without human 

intervention. In fact, most of the work described in the subsequent sections of this 

chapter was performed with this purpose in mind. 

 

3.1.2  Avoiding the “language-as-a-fixed-effect fallacy” 

A scientific experiment would have very little point if the conclusions it reaches are 

limited only to the specific set of stimuli and/or to the specific individuals who 

participate in that experiment (Coleman, 1964). In other words, experimental results 

obtained from the necessarily small sample of stimuli and subjects used in the study 

should be generalizable to the population of all possible subjects on the one hand, 

and to the set of all possible stimuli on the other. Coleman (1964), however, notes 

that the actual situation is far from this ideal: “There is little statistical evidence that 

such studies could be successfully replicated if a different sample of language 

materials were used” (Coleman, 1964, p. 219). In a widely cited article, Clark (1973) 

defines the “language-as-a-fixed-effect fallacy” as the unfounded assumption that the 

findings obtained from the small sample of linguistic materials used in a given 

experiment are automatically true for language in general (also see Raaijmakers, 

Schrijnemakers, & Gremmen, 1999). 

 To reduce the potential impact of the “language-as-a-fixed-effect fallacy”, 

multiple stimulus sets have been used in the experiments discussed in Chapter 4, 

using a fully-automated stimulus-selection algorithm specially designed for this 

study (see Section 4.2.4 for details). 
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3.1.3  Avoiding laboratory experiments 

Behavioral / psycholinguistic experiments are generally conducted in controlled 

laboratory environments. This offers several advantages: (a) By using the same 

equipment for all subjects, the experimenter can be sure that the stimuli are 

presented, and responses recorded, in a uniform manner; (b) personal and 

demographic data collected from the subjects is reasonably reliable; (c) instructions 

can be given quite efficiently because subjects can ask questions if they are unsure 

about certain details of the task; (d) participant behavior and environmental 

parameters can be monitored closely; (e) preventing the same person from 

participating in the same experiment more than once is relatively easy. 

However, the laboratory method also involves certain issues: (a) Subjects are 

usually unmotivated because the typical test subject is a student who is offered a 

nominal sum of money, extra course credit, and in many cases nothing, for 

participating in the experiment; (b) subjects are not naive: since the typical subject is 

a current student of one or more professors involved in the study, he/she has some 

idea about what the experiment might be trying to test; (c) subjects are not 

representative of native speakers as a whole: most subjects are undergrad students in 

their early twenties and thus represent a very specific sub-group with respect to age, 

sex, income, education, vocabulary size, linguistic preferences, cognitive skills, etc.; 

(d) sample size is small: the typical number of subjects in a laboratory experiment is 

between 20-70. 

A second and increasingly popular option is to conduct the experiment online. 

An online experiment reduces the severity of the above-listed issues to varying 

degrees: (a) subjects participate in the experiment voluntarily and are thus more 

motivated than undergrad students forced to participate in the experiment; (b) since 
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online advertisements of the experiment can reach anyone with an internet 

connection, subjects tend to come from all sections of society, and are thus both 

more representative of the typical native-speaker and are also more naïve as to the 

objectives of the experiment; (c) sample size is larger by several orders of 

magnitude. Online experiments also have the following added benefits: (a) Total cost 

is lower (no logistics, no equipment); (b) data collection is almost instantaneous. 

On the other hand, online experiments have their own drawbacks: (a) The 

experimenter has no control over the equipment used by the subject during the 

experiment, and also no control over the environment / setting where the subject 

takes the experiment; (b) it is impossible to make sure that the subject has properly 

understood the instructions; (c) it is impossible to verify that the subject has provided 

correct demographic and personal data; (d) it is much more difficult than in a 

laboratory experiment to prevent the same person from participating in the 

experiment more than once. 

Even if we assume that the benefits outweigh the drawbacks, online 

experiments are not a cure-all solution. The specific nature of the experimental task 

must be considered: If the experiment is designed to measure response time 

differences between subjects, the equipment issue would have disastrous 

consequences. The present study, however, is interested in within-subjects 

differences rather than between-subjects differences in response time. In other words, 

the two experimental conditions (high-frequency words vs. low-frequency words) are 

not administered to two separate groups; every subject is exposed to all (two) 

conditions, and thus every subject serves as its own control. This is why an online 

experiment can be conducted for the purposes of this study. 
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3.1.4  Quantifying anything that can be quantified 

As mentioned earlier, there exists a large number of variables that can have an effect 

on response times in psycholinguistic experiments. Moreover, as mentioned in 

Section 2.2.1, the properties of a single word can be quantified at a surprisingly large 

number of levels. With these observations in mind, the last design decision is to try 

to quantify anything that can be quantified about Turkish words, and to use the 

resulting variables in the experiments. 

The tree model discussed in Section 3.2.1, the generalized frequency notation 

proposed in Section 3.2.2, and the various metrics defined in Section 3.2.4 are the 

result of this effort to quantify and control. To the best of our knowledge, the values 

of these parameters have been estimated for the first time for Turkish. It is hoped that 

these general-purpose linguistic resources will both improve the validity and 

reliability of the results reported in the present study, and will also be useful in future 

studies in the field. The sections that follow offer a detailed description of the steps 

followed for the development of these resources. 

 

3.2  Notation, definitions and models  

This section summarizes the formal notation, definitions and mathematical models 

developed in the course of this study. The ideas proposed in this section were mainly 

borne of the effort to define independent variables and control for confounding 

variables during the experiments, but also go beyond that purpose. Although only a 

small part of the ideas proposed here have been used in the actual experiments, we 

think that this quantification and modelling effort will be useful for future work in 

the field. 
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3.2.1  The suffix tree and suffix sequences 

In an agglutinating language, affixes accumulate on the root one after the other, as 

briefly demonstrated in Section 2.4. This “one-affix-at-a-time” mechanism offers the 

possibility to represent all possible affix sequences of the language in the form of a 

single tree, which will be referred to as the “suffix tree”.12 The suffix tree is the 

central modelling tool that will be used to describe, represent, and measure 

morphological phenomena in this study. 

Figure 2 reproduces a small subset of the suffix tree for Turkish nouns, based 

on actual corpus data. The large black node at the top-left corner represents the root 

(in this case a bare noun), and each of the other nodes represents one of the suffixes 

listed in Appendix A. 

Node color indicates suffix type (red: derivational suffix, green: plural 

marker, orange: compound marker, blue: inflectional suffix, yellow: non-terminal). 

The yellow nodes do not represent actual word-forms. They represent 

incomplete/intermediate verb forms that cannot stand alone because they do not 

contain the obligatory person, tense, aspect or modality markers, and have been 

added to the tree to make sure that the root can be reached from any given node.13 

All nodes except non-terminal nodes represent actual word-forms attested in the 

corpus (for a discussion of grammatically possible word-forms that are not attested in 

the BOUN Corpus , see Section 3.4.8). 

                                                           
12 Since prefixation has a very limited range of application in Turkish (Göksel & Kerslake, 2005, p. 

49) and infixation is non-existent, the affix tree will be called the “suffix tree” for simplicity. 
13 In fact, these incomplete/intermediate forms are orthographically identical to the second-person 

singular of the imperative, but we regard this as a superficial coincidence: Treating these forms as 

second-person imperative forms would not make sense since the child nodes of these forms do not 

have to be second-person and/or imperative. For example, if we treat the form yaptır as a second-

person singular imperative (Verb+Caus+Imp+A2sg), the “child” yaptırdık would be expected to 

inherit this second-person singular imperative property, but it does not. 
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Moving from a given node to one of its children is equivalent to adding a 

suffix. For example, moving from the root node R  to Node 15, and then to Node 52 

creates the sequence Noun+Agt+Ness, which is a highly productive pattern that 

creates profession names like arabacılık ‘profession of a car-maker’, demircilik 

‘profession of an ironsmith’, koruculuk ‘profession of a ranger’, and sütçülük 

‘profession of a milkman’. The gray arrows in Figure 2 point to the nodes involved 

in the step-by-step creation of the template R+15+52+04+60+09, using the example 

temsil+ci+lik+ler+imiz+i. 

The suffix sequence that remains when the root is removed from the word-

form is a central concept in this study, and will be referred to as the “suffix 

template”. Roots combine with suffix templates to create word-forms. In the above 

examples, for instance, the nominal roots araba ‘car’, demir ‘iron’, koru ‘small 

forest’ and süt ‘milk’ combine with the suffix template Agt+Ness to form stems like 

arabacılık, demircilik, koruculuk and sütçülük. There are more than 4,000 such stem 

types in the BOUN Corpus, and all of these are represented by the single red node 

denoted ‘52’ in the center of Figure 2. Finally, node size is proportional to the total 

(logarithmic) frequency of all word-forms that use the suffix template in question. 
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Figure 2.  A suffix tree representing the accumulation of suffixes on a root 

 

The tree model allows us to define suffix templates purely in mathematical 

terms. Before moving on to the categorization of suffix templates, note that a suffix 

template is not a single node but a path on the tree. More specifically, a suffix 

template is a path that (a) does not include the root node, (b) starts at an immediate 

child of the root node, and (c) ends at a terminal node. This being a tree structure, the 

relevant path automatically becomes uniquely identified when the name of its end-

node is specified.  Below are some suffix template examples based on Figure 2: 

* R-15-52 (Noun+Agt+Ness) is not a suffix template because it starts at R. 

* 15-52 (Agt+Ness) is a suffix template. 
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* 15-52-75 (Agt+Ness+Pres) is not a suffix template because it ends at non-

terminal node 75 (Pres). 

* 15-52-04-60-09 (Agt+Ness+A3pl+P1pl+Acc) is a suffix template. 

* 86 (Rel) is not a suffix template because it does not start at an immediate 

child of R. 

Now, let us try to categorize suffix templates based on the types of suffixes 

(i.e. tree nodes) they contain: 

Tinf : Inflectional template. Suffix sequence that produces a purely inflectional 

form. Cannot contain any derivational suffixes or the compound marker -(s)I 

(visually: any path without red or orange nodes). Examples: +dA+ki+ler+in, 

+lAr+ImIz+lA, +ler+in+ki+ler+den 

Tdrv : Derivational template. Suffix sequence that produces a derivational 

form. The first suffix after the root must be a derivational suffix, which may or may 

not be followed by one or more inflectional suffixes and/or the plural marker –lAr 

and/or the compound marker -(s)I (visually: any path that starts at a red node). 

Examples: +CI, +lIklArdAki, +CI+(s)I+(n)dA+ki+lAr, +lAş+tIr+mA+mA+lI 

 TCM : Compound template. Suffix sequence that produces a compound form. 

The compound marker -(s)I may occur anywhere within the template. Cannot contain 

any derivational suffix (visually: any path that contains an orange node but no red 

nodes). Examples: +(s)I+(n)dA+ki+lAr, +CI+lIk+(s)I+mIz, +lAş+Abil+mA+(s)I 

For the sake of completeness, let us also define the empty template TØ, which 

is assumed to be attached to bare roots, although it does not have any surface 

representation. 
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3.2.2  Defining frequency  

In the context of exposure to linguistic events, frequency is a surprisingly complex 

concept. What types of frequency, if any, does a human brain track when exposed to 

complex forms like sinema oyunculuğundaki ‘the one in film acting’? Several things 

can be measured here: the frequency of the first word-form (sinema), the second 

word-form (oyunculuğundaki), the second word-form's root or stem(s) (oyun, 

oyuncu, oyunculuk), the phrase as a whole (sinema oyunculuğundaki), individual 

inflectional suffixes (-(n)DA, -ki), individual derivational suffixes (-CI, -lIk), the 

suffix template as a whole (+CI+lIk+(s)I+(n)+DA+ki), etc. 

Considering the terminological problems discussed in Section 2.2.2 of the 

literature review, a generalized formal notation will be proposed here, and equivalent 

terms used in the literature, if any, will be indicated in footnotes. To be able to 

systematically define frequency as exhaustively as possible, the following section 

uses the theory-neutral concept “bundle”. 

 

3.2.2.1  Bundles  

For the purposes of this study, a “word-form bundle” is defined as the set of all 

word-forms that are related to each other in some systematic way. For example, the 

word-forms gözü, göze, gözde, gözden, gözün, gözler, gözle constitute a meaningful 

bundle in that they are all formed by adding a single inflectional suffix to the root 

göz ‘eye’14. Another meaningful bundle of the same root would be gözlem, gözlemci, 

gözlemcilik, gözlük, gözlükçü, gözlükçülük, etc., the set of all word-forms that can be 

obtained by adding any number of derivational suffixes to the root göz. 

                                                           
14 Although this is closely related to the concept “linguistic paradigm”, the term “paradigm” will be 

avoided here, since the definitions in this section go well beyond the traditional usage of that term in 

linguistics literature. To avoid overgeneralizing an existing term, the rather neutral term “bundle” will 

be used. 
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Similarly, a “template bundle” is defined as the set of all suffix templates that 

are related to each other in some systematic way. For example the suffix templates 

+Ness+Acc (+lIk+I), +Ness+Dat (+lIk+A), +Ness+Loc (+lIk+DA), +Ness+Abl 

(+lIk+DAn), +Ness+Gen (+lIk+(n)In), +Ness+A3pl (+lIk+lAr) constitute a 

meaningful bundle in that they are all formed by adding a single inflectional suffix to 

the derivational template +Ness. When combined with the root tüccar ‘merchant’, 

for instance, these bundle members would form the words tüccarlığı, tüccarlığa, 

tüccarlıkta, tüccarlıktan, tüccarlığın, and tüccarlıklar. Another meaningful bundle of 

the derivational template +Ness (+lIk) would be +Ness+Agt (+lIk+CI), +Ness+With 

(+lIk+lI), +Ness+Without (+lIk+sIz), +Ness+Agt+Ness (+lIk+CI+lIk), the set of all 

suffix templates that can be obtained by adding at most two derivational suffixes to 

the suffix template +Ness. Once again, when combined with the root tüccar 

‘merchant’, these bundle members would form the (hardly interpretable but possible) 

words tüccarlıkçı, tüccarlıklı, tüccarlıksız, and tüccarlıkçılık. 

 

(a) Inflectional bundles 

For the purposes of this study, the “inflectional bundle” Binf:n(S)  of a stem S is 

defined as all word-forms obtained by adding to S any inflectional template Tinf:n, 

where n refers to the maximum number of inflectional suffixes allowed to be added 

to the stem, i.e. the maximum allowed length of the inflectional template. 

Additionally, Binf:max(S)  denotes the maximal inflectional bundle where n is allowed 

to be as large as the morphological rules of the language permit.15 

A second distinction will be made based on whether membership in the 

bundle requires corpus frequency to be non-zero. If word-forms that are not attested 

                                                           
15 Note that the traditional definition of an inflectional paradigm in linguistics literature is equivalent 

to Binf:1(S). 
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in a certain corpus are excluded, a smaller bundle will be obtained, which will be 

referred to as the “attested inflectional bundle” and denoted by B’inf:n(S). 

Finally, a third distinction will be made based on whether or not the stem 

itself is included in the bundle. If the stem is included, the resulting bundle will be 

referred to as the “extended inflectional bundle” and denoted by B*inf:n(S). 

The following made-up example using the stem göz ‘eye’ illustrates some of 

the inflectional bundles resulting from these definitions.16 On each row, the members 

of the relevant bundle are marked ‘x’: 

 

Table 2.  Inflectional Bundles of the Stem göz ‘eye’ 

Form göz ~ü ~ün ~de ~dedir ~ünki ~ünkiler ~ünkileri … 

Attested? yes yes yes no yes yes no yes … 

Binf:1(S)  x x x     … 

B’inf:1(S)  x x      … 

B*inf:1(S) x x x x     … 

B*’inf:1(S) x x x      … 

Binf:2(S)  x x x x x   … 

B’inf:2(S)  x x  x x   … 

B*inf:2(S) x x x x x x   … 

B*’inf:2(S) x x x  x x   … 

… … … … … … … … … … 

Binf:max(S)  x x x x x x x … 

B’inf:max(S)  x x  x x  x … 

B*inf:max(S) x x x x x x x x … 

B*’inf:max(S) x x x  x x  x … 

 

                                                           
16 The total frequency of all members of the inflectional bundle is sometimes referred to as “base 

frequency” in the literature. See Section 2.2.2.2 for details. 
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This notation is unnecessarily complicated for analytic languages like 

English. In fact, applying the above definitions to the English stem ‘eye’, we obtain 

Table 3. 

 

Table 3.  Inflectional Bundles of the Stem ‘eye’ 

Form eye ~s ~‘s ~s’ 

Attested? yes yes yes yes 

Binf:1(S)  x x  

B’inf:1(S)  x x  

B*inf:1(S) x x x  

B*’inf:1(S) x x x  

Binf:2(S)  x x x 

B’inf:2(S)  x x x 

B*inf:2(S) x x x x 

B*’inf:2(S) x x x x 

Binf:max(S)  x x x 

B’inf:max(S)  x x x 

B*inf:max(S) x x x x 

B*’inf:max(S) x x x x 

 

As can be seen in Table 3, there are only three different sets of word-forms: 

The largest, four-member bundle contains (1) the nominative, (2) the plural, (3) the 

possessive, and (4) the plural-possessive; the three-member bundle contains (2) and 

(3) and (4), while the two-member bundle only contains (2) and (3). The template-

length parameter n has very little effect, because a noun can take at most two 

inflectional suffixes in English. 

Also note that all four forms have been marked as “attested”. This is because 

there are only four inflectional forms in English nominal morphotactics, and a 
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moderately large corpus would probably contain all of them at least once. In other 

words, the sparsity phenomenon described in Chapter 3.4.8 below does not exist, or 

is much weaker, in languages like English, at least in the case of inflection. But in 

Turkish: 

(a) a single stem can take as many as seven consecutive inflectional suffixes, 

as in the made-up example ev-ler-in-de-ki-ler-imiz-den, which gives rise to seven 

possible bundle lengths; 

(b) a single inflectional bundle can have tens of thousands of members, which 

gives rise to the sparsity phenomenon, where thousands of grammatically possible 

forms do not occur in a rather large corpus even once, thus necessitating the 

distinction between attested and unattested bundle members.17 

 

(b) Derivational bundles    

Applying the same idea to derivational suffixes, the “derivational bundle” Bdrv:n(S)  of 

a stem S is defined as all word-forms obtained by adding to S any derivational 

template Tdrv:n, where all of the n nodes on the path between S and Tdrv  are 

derivational. As before, Bdrv:max(S)  denotes the maximal derivational bundle where n 

is allowed to be as large as the morphotactics of the language permits.18 

The second distinction is based on whether membership in the bundle 

requires corpus frequency to be non-zero. If unattested word-forms are excluded, a 

smaller bundle is obtained, which will be referred to as “attested derivational bundle” 

and denoted by B’drv:n(S). 

                                                           
17 This is the distinction Hankamer (1989) ignores in his treatment of the productivity of Turkish 

morphology. 
18 The total frequency of all members of the derivational bundle is known as “family frequency” in the 

literature. See Section 2.2.2.3 for details. 
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As before, the third distinction is based on whether or not the stem itself is 

included in the bundle. If the stem is included, the resulting bundle will be referred to 

as “extended derivational bundle” and denoted by B*drv:n(S). 

The made-up example in Table 4 using the stem göz ‘eye’ illustrates some of 

the derivational bundles resulting from the above definitions. 

 

Table 4.  Derivational Bundles of the stem göz ‘eye’ 

 Form göz ~lük ~cü ~lükçü ~lükçülük ~lemcisizlik … 

Attested? yes yes no yes no yes … 

Bdrv:1(S)  x x    … 

B’drv:1(S)  x     … 

B*drv:1(S) x x x    … 

B*’drv:1(S) x x     … 

Bdrv:2(S)  x x x   … 

B’drv:2(S)  x  x   … 

B*drv:2(S) x x x x   … 

B*’drv:2(S) x x  x   … 

… … … … … … … … 

Bdrv:max(S)  x x x x x … 

B’drv:max(S)  x  x  x … 

B*drv:max(S) x x x x x x … 

B*’drv:max(S) x x  x  x … 

 

Unlike the situation in inflectional bundles, derivational bundles defined in 

this complicated manner can be meaningful also for languages like English. This is 

because, unlike its inflectional morphology, the derivational morphology of English 
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is quite complex, where a stem can take up to five affixes, as in the example 

deinstitutionalization.19 

 

(c) Template bundles 

The inflectional and derivational bundles defined above are sets of word-

forms. However, it is also possible and meaningful to define bundles that package 

suffix templates instead of word-forms. Simply by replacing the stem S  in the above 

definitions with a suffix template T, we obtain two additional sets of bundles, shown 

in Table 5 and Table 6. Note that the column headings now use the allomorph 

notation with capital letters, because they now represent all possible allomorphs 

(surface forms) of the relevant suffix as attached to any stem, rather than a particular 

allomorph of the relevant suffix as attached to a particular stem: 

 

Table 5.  Inflectional Template Bundles 

Form Ø -(y)I -DA -DAdIr -(n)In -(n)Inki -(n)InkilAr -(n)InkilArI … 

Attested? yes yes no yes yes yes no yes … 

Binf:1(T)  x x  x    … 

B’inf:1(T)  x   x    … 

B*inf:1(T) x x x  x    … 

B*’inf:1(T) x x   x    … 

Binf:2(T)  x x x x x   … 

B’inf:2(T)  x  x x x   … 

B*inf:2(T) x x x x x x   … 

B*’inf:2(T) x x  x x x   … 

… … … … … … … … … … 

Binf:max(T)  x x x x x x x … 

B’inf:max(T)  x  x x x  x … 

B*inf:max(T) x x x x x x x x … 

B*’inf:max(T) x x  x x x  x … 

 

                                                           
19 However, as this example demonstrates, English uses both prefixes and suffixes, and this might 

justify the introduction of separate bundle types for prefixed and suffixed word-forms. Since this 

study uses Turkish data, this will not be attempted here. 
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Table 6.  Derivational Template Bundles 

Form Ø -lIk -CI -lIkCI -lIkçIlIk -lAmcIsIzlIk … 

Attested? yes yes no yes no yes … 

Bdrv:1(T)  x x    … 

B’drv:1(T)  x     … 

B*drv:1(T) x x x    … 

B*’drv:1(T) x x     … 

Bdrv:2(T)  x x x   … 

B’drv:2(T)  x  x   … 

B*drv:2(T) x x x x   … 

B*’drv:2(T) x x  x   … 

… … … … … … … … 

Bdrv:max(T)  x x x x x … 

B’drv:max(T)  x  x  x … 

B*drv:max(T) x x x x x x … 

B*’drv:max(T) x x  x  x … 

 

Assuming that at most seven inflectional suffixes and at most four 

derivational suffixes can be attached to Turkish bare nouns, ((4 x 7) + (4 x 4)) x 2 = 

88 different frequency metrics can be defined using the above bundle notation. Since 

it is impractical to exemplify them one-by-one, six arbitrary examples are given 

below, using the stem göz and the derivational template Agt: 

f(Pinf:1(‘göz’)): Total frequency of all words formed by adding a single 

inflectional suffix to the stem göz. This includes, but is not limited to, the frequencies 

of gözü, göze, gözde, gözden, gözün, gözler, gözle…    

f(P*inf:max(‘göz’)): Total frequency of all words formed by adding any number 

of inflectional suffixes to the stem göz, plus the frequency of the stem göz itself. This 

includes, but is not limited to, the frequencies of göz, gözü, gözlerimiz, gözlerimizin, 

gözlerimizdekiler… 

f(Bdrv:1(‘göz’)): Total frequency of all words formed by adding a single 

derivational suffix to the stem göz. This includes, but is not limited to, the 

frequencies of gözlük,  gözcü, and gözlem.  
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f(B*drv:max(‘göz’)): Total frequency of all words formed by adding any number 

of derivational suffixes to the stem göz, plus the frequency of the stem göz itself. 

This includes, but is not limited to, the frequencies of göz, gözlük,  gözcü, gözlem, 

gözlükçü, gözlemci, gözlükçülük, and gözlemcisizlik. 

f(Binf:max(‘Agt’)): Total frequency of all suffix templates formed by adding any 

number of inflectional templates to the suffix template Agt. This includes, but is not 

limited to, the frequencies of Agt+Gen, Agt+Gen+Rel, Agt+Gen+Rel+A3pl+Acc …  

f(B*drv:1(‘Agt’)): Total frequency of all suffix templates formed by adding a 

single derivational suffix to the suffix template Agt, plus the frequency of the suffix 

template Agt itself. This includes, but is not limited to, the frequencies of Agt, 

Agt+Ness, Agt+With, Agt+Without… 

 

3.2.3  Does this make sense?  

When a human brain is exposed to a visual linguistic event (i.e. printed or 

handwritten word or phrase)20, several of the above-defined frequency values would 

potentially increase by one. But does the brain really update tens of different 

frequency values when exposed to a single complex expression? 

It would require extensive sets of experiments to see if all (or any) of these 

proposed frequency measures have “psychological reality”. We have used only a few 

of them in the two experiments described in Chapter 4 below. Still, it is clear that 

frequency is far from being a straightforward concept, and expressions like "the 

frequency of the word X" are ambiguous at best. 

Since it is largely based on English and other morphologically impoverished 

languages, existing literature does not treat frequency at this level of detail. But a 

                                                           
20 Note that we only focus on “visual lexical events”, and ignore phonology, semantics and syntax 

almost completely, for which separate sets of frequency measures can be defined. 
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systematic treatment with a special emphasis on morphology is indispensable in the 

case of an agglutinating language. 

 

3.2.4  Quantifying suffix templates  

Combined with some metrics defined with the help of the suffix tree described in 

Section 3.2.1. and some additional metrics that will be defined in this section, a 

suffix template will be represented by the seventeen structural parameters below. In 

addition to offering a systematic way of describing suffix templates, these parameters 

will also allow us to control for several potential confounding variables while 

designing the experiments: 

(a) Template frequency: Number of times a suffix template occurs in the 

corpus. We refer to the corresponding node on the tree as the “focus node”. 

(b) Parent count: Given a focus node, this is the number of parents, excluding 

any non-terminal nodes. 

(c) Parent frequency: Total frequency of parent nodes. 

(d) Child count: Given a focus node, this is the number of children, excluding 

any non-terminal nodes. 

(e) Child frequency: Total frequency of child nodes. 

(f) Sibling count: Given a focus node, this is the number of its siblings on the 

tree, excluding any non-terminal nodes. 

(g) Sibling frequency: Total frequency of sibling nodes. 

(h) Unigram count: Number of suffixes (suffix unigrams) in the template. For 

example, the template +Ness+Agt+A3pl contains the suffix unigrams Ness, Agt, and 

A3pl, and its unigram count is therefore equal to three. 
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(i) Mean unigram Frequency: Arithmetic mean of the frequencies of all 

suffixes contained in the template. For example, this is equal to the arithmetic mean 

of the three frequencies corresponding to the three suffixes listed in (i) above. 

(j) Bigram count: Number of suffix bigrams, after adding two dummies to 

mark the beginning (‘#’) and end (‘|’) of the suffix template. For example the 

template +Ness+Agt+A3pl contains the following suffix bigrams: {(#, Ness), (Ness, 

Agt), (Agt, A3pl), (A3pl, |)}. 

(k) Mean bigram frequency: Arithmetic mean of the frequencies of all suffix 

bigrams contained in the template. For example, the arithmetic mean of the four 

frequencies corresponding to the four bigrams listed in (j) above. 

(l) Trigram count: Number of suffix trigrams, after adding two dummies to 

mark the beginning (‘#) and end (‘|) of the suffix template. For example the template 

+Ness+Agt+A3pl contains the following suffix trigrams: {(#, Ness, Agt), (Ness, Agt, 

A3pl), (Agt, A3pl, |)}. 

(m) Mean trigram Frequency: Arithmetic mean of the frequencies of all suffix 

trigrams contained in the template. For example, the arithmetic mean of the three 

frequencies corresponding to the three trigrams listed in (l) above. 

(n) Inflectional suffix count: Number of inflectional suffixes in the suffix 

template. Please refer to Appendix A for a list of inflectional suffixes. 

(o) Derivational suffix count: Number of derivational suffixes in the suffix 

template. Please refer to Appendix A for a list of derivational suffixes. 

(p) Existence of the compound marker -(s)I: This is a Boolean parameter that 

is set to 1 if the suffix template contains the compound marker -(s)I, and to 0 

otherwise (see Section 3.4.6 for a discussion on why the compound marker -(s)I 

requires special treatment). 



58 
 

(q) Blocking: The blocking parameter specifies the position where the 

phonological/orthographic blocking described in Section 2.4 occurs: Zero means 

there is no blocking, two means the second suffix is an A-type suffix, etc. 

(r) Orthographic length: Number of characters in the word-form. For 

example, the orthographic length of the word-form gör ‘see’ is three, while the 

orthographic length of görüldü ‘(it) has been seen’ is seven. 

 

3.3  Measuring frequency  

Having defined various frequency metrics and structural parameters, this section 

estimates their actual values for individual words, phrases, morphemes and suffix 

templates. 

 

3.3.1  Objective vs. subjective frequency 

The frequency of a linguistic event can be measured objectively or subjectively 

(Howes, 1954; Gernsbacher, 1984; Balota, Pilotti, & Cortese, 2001). “Objective 

frequency” refers to the number of times a linguistic event occurs in a certain 

(usually large-scale and electronic) corpus. 

Frequency is not an intrinsic property of a word. “It cannot be measured 

directly on the word . . . but can be determined by counting occurrences of the word 

in a finite specimen of text” (Popescu, 2009, p. 1). It is impossible to estimate the 

true population value of a word’s frequency “because there are no true populations in 

language” (Popescu, 2009, p. 1). Hence, expressions like “the frequency of the word 

W is n” are meaningless; all that can be asserted is that “the frequency of the word W 

in corpus C is n”. In other words, frequency is a strictly corpus-dependent, extrinsic 

measure. 
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Despite the above-mentioned limitation, frequency counts obtained from 

corpora are assumed to provide an objective estimate of an average person's exposure 

to a linguistic event. “Subjective frequency”, on the other hand, is measured by 

asking people how familiar a given lexical item is, and by averaging the self-reported 

values. Subjective measures of frequency aim to overcome the sampling bias usually 

involved in corpus counts, but are harder to obtain and may be contaminated by 

certain other, unintended variables (Balota, Pilotti, & Cortese, 2001, p. 640). 

In this study, we have used the objective method to estimate frequencies. In 

particular, we have used the BOUN Corpus described in Sak, Güngör & Saraçlar 

(2008). 

 

3.3.2  The BOUN Corpus  

This is a “web corpus” in the sense that it is a collection of documents harvested 

from the World Wide Web. It consists of 491 million tokens including punctuation 

marks, and has two sub-components. The first sub-component called "NewsCor" is 

based on three dailies published in Turkish, and contains 212 million tokens. The 

other sub-component called "GenCor" is a general sampling of Turkish webpages 

and contains 279 million tokens. The exact publication dates of the texts included in 

the corpus have not been reported in the relevant papers, but a safe guess would be 

that they all belong to the period after the year 2005. 

Although the BOUN Corpus is a medium- to large-scale corpus even by 

modern standards, it  is by no means representative of the Turkish language as a 

whole. Spoken language is represented only to the extent the news items in the 

dailies included in the corpus contain transcribed speech (such as statements by 

politicians), while formal written language, and especially news-reporting language, 
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is overrepresented. This might cause significant sampling errors, especially at the 

lower end of the frequency spectrum. 

In any study that uses a language corpus as an input, the question of 

representativeness inevitably arises. Is the BOUN Corpus suitable for the 

experiments described in this study? In our opinion, a corpus used in a set of visual-

word-recognition experiments should be representative of the visual-word-

recognition task rather than being “representative of the language as a whole”. Once 

again, “because there are no true populations in language” (Popescu, 2009, p. 1), no 

corpus, however large and balanced, can claim to be “representative of the language 

as a whole”. In this sense, a corpus dominated by newspapers and webpages is 

probably more suitable than a more “balanced” corpus that contains carefully 

selected samples from genres like poetry, law, medicine, sociology, etc. This is 

simply because newspapers and webpages presumably have a high share in the 

overall reading experience of our subjects (see Baayen, Milin & Ramscar (2016) for 

a detailed discussion of this issue). 

 

3.3.3  Morphological analysis and disambiguation 

Raw strings in a corpus are ambiguous. To repeat a famous example21, the letter-

string koyun has six interpretations, indicated in Table 7 together with their 

morphological analyses and English translations22: 

  

                                                           
21 In fact, this example is problematic because koyun(ii) ‘bosom’ never occurs in the nominative. It 

must occur in the possessive, in which case the /u/ in the root disappears (e.g. koynunda, koynuna, 

koynumuzda, etc.).  
22 The number of possible parses reaches eleven if we include the five parses that treat the nominals 

above as predicates: is a sheep / is a bosom / is of the bay / is your bay / is your dark one. 
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Table 7.  Six Possible Interpretations of the String koyun 

Root Morphological analysis English translation 

koyun(i)_Noun ‘sheep’ Noun sheep 

koyun(ii)_Noun ‘bosom’ Noun bosom 

koy_Verb ‘to put’ Verb+Imp+A2pl put (it) 

koy_Noun ‘bay’ Noun+Gen of the bay 

koy_Noun ‘bay’ Noun+P2sg your bay 

koyu_Adj ‘dark’ Adj+P2sg your dark one 

 

Thus, the more than 400 million tokens in the corpus must be 

morphologically analyzed, disambiguated23 and counted before accurate frequencies 

can be calculated. For this purpose we used the “annotated corpus search engine” at 

tscorpus.com, which is described in Sezer & Sezer (2013) (referred to as “TSCorpus” 

below). 

TSCorpus uses Sak, Güngör & Saraçlar (2007) for morphological analysis 

and disambiguation, which in turn uses the tagset described in Oflazer, Say, 

Hakkani-Tür & Tür (2003). The complete tagset is provided in Appendix A. 

Sak, Güngör & Saraçlar (2007) report a 96.8% accuracy for their 

morphological disambiguator, but our personal experience with the data suggests that 

its performance on the BOUN Corpus is significantly worse, mainly because the 

disambiguation algorithm makes systematic errors in certain cases where the 

morphology of Turkish involves an inherent ambiguity that cannot be resolved 

without syntactic parsing, or even semantic analysis and/or world knowledge in some 

cases. The most important of these systematic errors concerns the accusative-

                                                           
23 “Disambiguation” in the context of morphological analysis refers the task of choosing the correct 

morphological analysis from among all possible morphological analyses.  
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possessive ambiguity that effects nouns ending in a consonant. Consider the 

sequence hüzün insanı derinleştirir, where the part hüzün insanı has the two parses 

indicated in Table 8, in the absence of additional information. 

 

Table 8.  Two Possible Interpretations of the Sequence hüzün insanı derinleştirir 

Morphological analysis of hüzün insanı English translation of entire sequence 

Noun Noun+Acc Sadness deepens a person. 

Noun Noun+P3sg The sadness person deepens [it]. 

 

Since the disambiguator described by Sak, Güngör & Saraçlar (2008) 

almost exclusively prefers the latter possessive interpretation in such cases (probably 

because this form is much more frequent in the aggregate), TSCorpus and other 

sources based on this disambiguator frequently use the possessive suffix where they 

should have used the accusative suffix. Since this systematic error is rather difficult 

to correct during post-processing, we had to leave this problem unresolved. 

Another problem with the morphological analysis data is related to the list of 

roots used by the program. To give an example, the analyzer treats telsizcilik ‘the 

profession of a radio operator’ as a nominal root, probably simply because the root-

list used by the program has been obtained from a printed dictionary that happens to 

have a separate entry for this complex word-form. The identically formed oyunculuk 

‘the profession of an actor’, on the other hand, is analyzed as oyun+Agt+Ness. This 

inconsistency contaminates the word-form and template frequencies obtained from 

the corpus. To minimize the impact of this problem, we have manually prepared a 

list of all complex roots that were erroneously marked as simplex by TSCorpus, and 

have updated the relevant frequencies (see Section 3.4.12 for a more detailed 

description of this marking task). 
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3.4  Processing corpus data  

The raw data obtained from TSCorpus has been processed by a series of computer 

programs developed for this study, mainly using the Python programming language. 

The steps are described below: 

 

3.4.1  Download raw data  

All word-forms that start with a letter other than ğ24 have been downloaded by 

running the following CQP queries25 on tscorpus.com: [word=“[aA].*”], 

[word=“[bB].*”], …, [word=“[zZ].*”] 

The raw data consists of the surface-form, lemma (stem) and morphological 

analysis of a single word, and the surface-form, lemma (stem) and morphological 

analysis of the words to its left and right. The present study only uses the word in 

focus, but the words to its left and right would be useful, for instance, for resolving 

the accusative-possessive ambiguity described above, for including clitics in 

morphological analyses, or for identifying repetitions. 

The resulting raw data consists of 283,695,791 such lines. In other words, all 

quantitative measures reported in this study are based on an approximately 283-

million-word corpus. 

 

3.4.2  Normalize the data 

In the context of data processing, “normalization” refers to any pre-processing 

performed to eliminate non-standard features and idiosyncrasies from raw data and 

                                                           
24 There are no words in Turkish that start with the letter ğ. 
25 CQP is a query language that allows users to perform complex queries on annotated corpus data. 

For details, see http://cwb.sourceforge.net.   
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bring raw data to a consistent, standard format, thus preparing it for further analysis. 

We applied the following normalizations to the raw data: 

(1) Remove circumflexes: The use of the circumflexed characters â, î, and û 

is not consistent in modern Turkish orthography. The Turkish word for ‘paper’, for 

instance, can be written as kâğıt, with a circumflex above the second letter, or much 

more frequently as kağıt, without the circumflex. In fact, the non-circumflexed 

version appears 31,813 times in the BOUN Corpus, while the circumflexed version 

appears only 9,619  times. To give a more striking example, the non-circumflexed 

and circumflexed versions of milli ‘national’ appear 30,469 and 1,863 times, 

respectively. To be able to count both forms as tokens of the same type, all 

circumflexes have been removed from the raw data.26 

(2) Convert to lowercase: This allows us to treat MASA, masa, Masa, and 

even mAsA, as tokens of a single type, rather than as tokens of four separate types. 

(3) Remove sense numbers: In some rare cases the raw data contains sense 

numbers of the form (i), (ii), (iii), etc., for certain homonymous roots such as yaz 

‘write’ or ‘summer’, çay ‘tea’ or ‘stream’, yüz ‘hundred’ or ‘swim’, koy ‘put’ or 

‘bay’. These sense numbers have been removed. 

 

3.4.3  Aggregate tokens  

In this step, we simply count the number of times each word-form occurs in the 

dataset, and aggregate each form in a single line: 

  

                                                           
26 The undesired consequence of this removal is that hala ‘aunt’ and hâlâ ‘still’ are now treated as a 

single type. However, such cases are extremely rare since the general tendency is to omit the 

circumflex. 
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Table 9.  Aggregating the Tokens in BOUN Corpus 

Before After 

jenerasyonu|jenerasyon|Noun+A3sg+P3sg+Nom 

japonya|japonya|Noun+Prop+A3sg+Pnon+Nom 

jenerasyonu|jenerasyon|Noun+A3sg+P3sg+Nom 

japonya|japonya|Noun+Prop+A3sg+Pnon+Nom 

jenerasyonu|jenerasyon|Noun+A3sg+P3sg+Nom 

jenerasyonu|jenerasyon|Noun+A3sg+P3sg+Nom, 3 

japonya|Japonya|Noun+Prop+A3sg+Pnon+Nom, 2 

 

 

The corpus contains 1,236,526 unique word-forms. When compared to the 200 

billion forms proposed by Hankamer (1989), this shows the surprising extent of the 

sparsity phenomenon described in Section 3.4.8. 

 

3.4.4  Calculate letter-ngrams  

The above data allows the computation of letter-ngram27 frequencies for the entire 

corpus, which will be needed to control for related variables during stimulus 

selection. The most frequent letters, letter-bigrams and letter-trigrams of Turkish are 

shown in Appendix B, Appendix C and Appendix D, respectively. 

Although a detailed discussion of the letter-ngram statistics is beyond the 

scope of this study, let us mention a few salient characteristics: The corpus contains 

865 distinct letter-bigrams and 10,120 distinct letter-trigrams. As in many other types 

of linguistic data (see Zipf, 1949; Baayen, 2001), the distributions are extremely 

uneven, with the top 10% letter-bigrams accounting for 66.4% of all letter-bigrams, 

and the top 10% letter-trigrams accounting for 82.3% of all letter-trigrams. 

In the next step, the two procedures described above will be applied to suffix 

templates instead of word-forms: 

 

                                                           
27 A sequence of two things is known as a “bigram”, a sequence of three things as a “trigram”, and a 

sequence of n things as an “ngram”. For example, the Turkish word kedi ‘cat’ contains the letter-

bigrams ke, ed, and di, and the letter-trigrams ked and edi.  
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3.4.5  Aggregate templates 

In this step, we count the number of times each suffix template occurs in the dataset, 

and aggregate each template in a single line: 

 

Table 10.  Aggregating the Templates in the BOUN Corpus 

Before After 

Noun+A3sg+P3sg+Gen 

Noun+A3sg+Pnon+Nom 

Noun+A3sg+P3sg+Gen 

Noun+A3sg+Pnon+Nom 

Noun+A3sg+P3sg+Gen 

Noun+A3sg+P3sg+Gen, 3 

Noun+A3sg+Pnon+Nom, 2 

 

 

 

The corpus contains 28,313 unique suffix templates. Once again, when compared to 

the more than 10 million templates proposed by Hankamer (1989), the extent of the 

sparsity phenomenon described in Section 3.4.8 is striking. The implications of this 

surprising finding in terms of language processing will be discussed in Section 5.1.4. 

 

3.4.6  Calculate template-ngrams 

The above data also allows us to compute template ngram frequencies for the entire 

corpus. This data will be needed to control for ngram-related variables during 

stimulus selection. The most frequent suffix-bigrams and suffix-trigrams or Turkish 

are shown in Appendix F and Appendix G. 

Once again, let us mention a few salient characteristics: The corpus contains 

940 distinct suffix-bigrams and 4,459 distinct suffix-trigrams. As in the letter-ngram 

data, the distributions are extremely uneven, with the top 10% suffix-bigrams 

accounting for 87.3% of all suffix-bigrams, and the top 10% suffix-trigrams 

accounting for 95.3% of all suffix-trigrams. 
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Another striking result is the extreme frequency of the morpheme -(s)I (tag: 

P3sg), both in terms of types and tokens. First of all, -(s)I is by far the most frequent 

suffix of Turkish: It occurs 37,531,526 times in the BOUN Corpus, followed by the 

plural marker, which occurs 22,780,373 times, and the passive marker, which occurs 

10,402,113 times (Appendix E). In the list of the most frequent 200 suffix templates 

(Appendix H), P3sg occurs 48 times, including the 2nd, 5th, 8th, 10th, 11th, 12th and 

16th top positions. All of the top seven middle-position suffix bigrams (Appendix F), 

and all of the top fifteen middle-position suffix trigrams (Appendix G) contain P3sg. 

In short, this morpheme dominates the statistics of Turkish morphology at every 

level. 

P3sg is the possessive suffix of the third person singular and can be expressed 

as -(s)I using the allomorph notation (i.e. it has the following eight variants: -ı, -i, -u, 

-ü, -sı, -si, -su, -sü). It appears in two constructions: (a) genitive constructions like 

Evrem’in arabası ‘Evrem’s car’ or pencerenin camı ‘the glass of the window’, and 

(b) compound nouns like pencere camı ‘window-glass’. 

According to Hayasi (1996), the genitive constructions in (a) have a phrase-

like nature, while the compound constructions in (b) have inherent word status. 

Traditional grammars do not distinguish between (a) and (b), and treat both under 

genitive constructions, while others (e.g. Swift, 1963) treat the -(s)I in the possessive 

compounds as in (b) above as a “compound marker”. Despite acknowledging that 

Swift’s treatment is superior to the traditional treatment, Hayasi (1996) discusses 

several problems involved in describing -(s)I as a compound marker, and concludes 

that “possessive compounds in Turkish cannot be exclusively dealt with either in 

morphology or in syntax” (Hayasi, 1996, p. 125). 
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In view of the above discussion and the extreme frequencies identified in this 

study, we will treat -(s)I as a separate category of its own. 

 

3.4.7  Verify corpus size 

It is known since Zipf (1949) that lexical data is characterized by extremely uneven 

distributions: There are a relatively few items that are extremely frequent, and a very 

large number of items that are extremely rare. This tendency applies at every level of 

linguistic analysis including words, syllables, morphemes, phonemes and graphemes, 

as well as sequences made up of them. An important consequence that is relevant for 

our purposes is that lexical parameters are highly dependent on sample (i.e. corpus) 

size. In Baayen’s words: “This property sets lexical statistics apart from most other 

areas in statistics, where an increase in sample size leads to enhanced accuracy and 

not to systematic changes in basic measures and parameters.” (Baayen, 2001, p. 1). 

To see how the BOUN Corpus behaves in this regard, we have counted the 

number of lemmas encountered for the first time, as corpus size increases by chunks 

of 10 million words. The resulting vocabulary-size histogram is shown in Figure 3: 

 

 

 

 

 

 

 

 

Figure 3.  Vocabulary size as a function of corpus size 
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Figure 3 shows that, although new lemmas continue to be discovered even as 

corpus size increases from 190 to 200 million, the rate of discovery decreases 

dramatically after the first 10 million tokens. This histogram verifies the basic 

findings of Zipf (1949) and Baayen (2001), and suggest that the BOUN Corpus does 

not exclude a significant number of word-forms and suffix templates, and is thus not 

an inappropriate source for the purposes of this study. 

 

3.4.8  Create suffix tree  

In this step we generate the suffix tree defined in Section 3.2.1 above. Figure 4 

shows a very small subset of the suffix tree derived from the BOUN Corpus (162 

nodes out of 30,666). The node in the center represents the (non-terminal) template 

Acquire+Caus+Pass+Able, which attaches to nominal roots and generates words of 

the form -lendirilebil-. 

The full version of the tree consists of 30,666 nodes. 7,320 of the nodes are 

non-terminal nodes added by us in order to link any given node to the topmost node. 

The remaining 23,346 nodes represent actual suffix templates attested in the BOUN 

Corpus. Of these, 11,808 attach to verb roots, 7,733 to noun roots, 2,919 to adjective 

roots, 829 to pronoun roots, 29 to postposition roots and 24 to the question clitic -mI. 

Since they do not have any derivational or inflectional forms, adverbs, conjunctions, 

determiners and interjections are each represented by a single node on the tree. 
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Figure 4.  A small subset of the suffix tree 

 

Although it looks complicated for a tree that visualizes only the children of 

the rather complicated suffix template Noun+Acquire+Caus+Pass+Able, the above 

suffix tree does not contain a node for every grammatically possible child of that 

template. The 30,666 nodes in the full version of the suffix tree represent only those 

suffix sequences that are attested in the BOUN Corpus. Literally tens of thousands of 

grammatically possible suffix sequences are absent from the corpus, even though it is 

a rather large corpus even by modern standards. 

The extended suffix tree in Figure 5 demonstrates this sparsity: The (non-

terminal) node in the center represents the sequence Noun+Agt+Become+Neg, 
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whose children can form words like politikacılaşmamalısın, politikacılaşmaması or 

politikacılaşmadığına. As before, the yellow nodes are non-terminal nodes that have 

been artificially added to make sure that there exists a path between every node of 

the tree and the root. They can thus be disregarded. The single blue node represents 

the suffix template Noun+Agt+Become+Neg+PastPart+P3sg+Dat, which occurs 

only once in the corpus, in the form of politikacılaşmadığına ‘to the fact that he/she 

has not turned into a politician’. 

The interesting part is the gray nodes, which represent grammatically valid 

suffix templates that do not occur in the corpus even once. As will be seen in the 

section on Experiment 2 below, this sparsity phenomenon creates a unique 

opportunity for experiment designers to create words that are perfectly grammatical 

and still have zero surface-frequency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  A particularly sparse region of the suffix tree 
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3.4.9  Calculate template parameters  

In this step, we calculate the parameters defined in Section 3.2.4 for the 23,346 suffix 

templates attested in the BOUN Corpus. This dataset is hoped to contribute to the 

growing literature on quantitative surveys on Turkish (see Güngör, 2003; Aksan et 

al., 2012; Durrant, 2013; Sezer & Sezer, 2013; Erten, Bozşahin, & Zeyrek, 2014 and 

Tolgay, 2015 for related work). 

 

3.4.10  Form the frequency matrix  

Using the resources described above, we now form a single matrix to represent all 

nominal roots28, and the frequencies of their various morphological forms. 

As mentioned in Section 3.4.8 above, 7,733 nominal suffix templates are 

attested in the BOUN Corpus. Once again, these exhibit an extremely uneven 

distribution, with the most frequent 200 nominal templates accounting for 99.3% of 

all tokens with a noun root. These are listed in Appendix H and the corresponding 

rank-coverage graph can be seen in Figure 6. 

 

 

 

 

 

 

 

Figure 6.  Frequency rank vs. coverage 

                                                           
28 As before, we focus only on nouns because the experiments use only nouns as stimuli. 
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Considering that the remaining 7,533 suffix templates account for only 0.7% 

of the tokens, we have chosen to prepare a 200-dimensional frequency matrix for 

noun roots, using only the top 200 suffix templates instead of using all 7,733. The 

resulting 20,661 x 200 matrix has the following structure: 

 

𝑓200

[
 
 
 
 
𝑅1

𝑅2

𝑅3

…
𝑅𝑛]

 
 
 
 

=

[
 
 
 
 
𝑓(𝑅1 + 𝑇1), 𝑓(𝑅1 + 𝑇2), 𝑓(𝑅1 + 𝑇3), … , 𝑓(𝑅1 + 𝑇200) 

𝑓(𝑅2 + 𝑇1), 𝑓(𝑅2 + 𝑇2), 𝑓(𝑅2 + 𝑇3),… , 𝑓(𝑅2 + 𝑇200) 

𝑓(𝑅3 + 𝑇1), 𝑓7(𝑅3 + 𝑇2), 𝑓(𝑅3 + 𝑇3),… , 𝑓(𝑅3 + 𝑇200) 
… …  …

𝑓(𝑅𝑛 + 𝑇1), 𝑓(𝑅𝑛 + 𝑇2), 𝑓(𝑅𝑛 + 𝑇3),… , 𝑓(𝑅𝑛 + 𝑇200) ]
 
 
 
 

 

 

𝑤ℎ𝑒𝑟𝑒 𝑓(𝑇1) > 𝑓(𝑇2) > ⋯ > 𝑓(𝑇200) 

 

3.4.11  Reduce to four dimensions 

In this step, we classify the above-mentioned 200 nominal suffix templates into four 

categories, thus gaining the ability to reduce the frequency matrix from 200 to 4 

dimensions. The four categories in question are “bare root”, “inflectional forms”, 

“derivational forms” and “–(s)I forms” (as discussed in Section 3.4.6, the compound 

marker –(s)I has been represented as a separate dimension of its own). 

The resulting 20,661 x 4 matrix has the following structure: 

𝑓4

[
 
 
 
 
𝑅1

𝑅2

𝑅3

…
𝑅𝑛]

 
 
 
 

=

[
 
 
 
 
 
𝑓(𝑅1), 𝑓(𝑅1 + 𝑇𝑖𝑛𝑓), 𝑓(𝑅1 + 𝑇𝑑𝑟𝑣), 𝑓(𝑅1 + 𝑇𝐶𝑀) 

𝑓(𝑅2), 𝑓(𝑅2 + 𝑇𝑖𝑛𝑓), 𝑓(𝑅2 + 𝑇𝑑𝑟𝑣), 𝑓(𝑅2 + 𝑇𝐶𝑀) 

𝑓(𝑅3), 𝑓(𝑅3 + 𝑇𝑖𝑛𝑓), 𝑓(𝑅3 + 𝑇𝑑𝑟𝑣), 𝑓(𝑅3 + 𝑇𝐶𝑀) 
… …  …

𝑓(𝑅𝑛), 𝑓(𝑅𝑛 + 𝑇𝑖𝑛𝑓), 𝑓(𝑅𝑛 + 𝑇𝑑𝑟𝑣), 𝑓(𝑅𝑛 + 𝑇𝐶𝑀) ]
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3.4.12  Improve the root dictionary  

As mentioned in Section 3.3.3, the morphological disambiguator treats certain 

complex stems as simplex (bare) roots. To continue the telsizcilik example, this 

incorrect treatment has the following undesired consequences: 

i. The derivational-form frequencies of all tokens that start with telsiz are 

underestimated. 

ii. All template ngram frequencies that involve the suffixes –CI and–lIk are 

underestimated. 

iii. The data contains superfluous frequency measures for telsizcilik. 

To partially solve these problems, 20,661 lemmas in the “root” dictionary 

have been manually scanned and marked as either (a) simplex (10,247 entries), (b) 

complex with a transparent structure (5,984 entries), or (c) complex with an opaque 

structure (4,430 entries). Below are some comments about the method used in this 

marking task: 

(a) Rule of thumb: A word is complex if some subset of its characters 

significantly overlaps with another, semantically related  word, even if the remainder 

is not a valid and productive affix and even if certain phonological and/or 

orthographic transformations are involved. Here are some words marked as complex 

in accordance with this rule: Türkolog-Türk, likidasyon-likid, sinematik-sinema, 

bankamatik-banka, antidot-anti, biberiye-biber, yanılsama-yanıl, nadirat-nadir, 

kanserojen-kanser, gramaj-gram, daktilograf-daktilo, dekoratör-dekor, otlak-ot, 

garantör- garant[i].  

(b) Certain apparently complex words proposed as part of the “Turkish 

language reform” starting in the 1930s have been treated as simplex, considering that 
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their internal structure is unclear: izlenim-izle?, birey-bir?, kalıtım-kal?, sınav-sına?, 

etmen-et?, dışkı-dış?, koşul-koş?, tanım-tanı?, kapsam-kapsa?, tümce-tüm?…29 

(c) Compound words have been treated as complex: telgraf+hane, 

anlam+bilim, baş+müdür… 

(d) Certain onomatopoeia have been treated as complex: çağıltı, şırıltı, 

tıkırtı… 

(e) Members of certain extended word families formed by widely used 

Persian and Latin suffixes have been treated as complex: -name, -hane, -metre, -loji, 

-syon, -izm… 

(f) Some complex lexicalizations have been treated as simplex: kahvaltı, 

tersane… 

(g) Many words that are complex according to the morphotactics of Arabic, 

Persian and Latin but would appear simplex to the average native speaker of Turkish 

have been treated as simplex: malikane, rençber, tezyinat, züccaciye, permanganat, 

anemi, ameliye, kameriye, sürmenaj… 

The result of this manual processing task is that the root dictionary of Sak, 

Güngör & Saraçlar (2007) erroneously lists 5,984 complex-transparent forms like 

telsizcilik and 4,430 complex-opaque forms like ultrason as simplex, meaning that 

only 49.6% of the lemmas in the “root” dictionary are actual roots. 

 

3.4.13  Recalculate 4D frequencies  

In this step, we recalculate the four-dimensional frequencies described in Section 

3.4.11, using the root-dictionary improvement described in Section 3.4.12. This 

involves two operations: 

                                                           
29 For a detailed discussion of the Turkish language reform, see Lewis (1999). 
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i. Remove all complex stems erroneously marked as simplex (e.g. telsizcilik, 

ultrason, kapsam). 

ii. In complex-transparent/simplex pairs like telsizcilik/telsiz, augment the 

third frequency value (derivational-forms frequency) of the simplex entry (telsiz in 

this case) by the sum of the four frequency values of the complex-transparent form 

(telsizcilik in this case). 

The result is a 10,247 x 4 matrix that contains the bare-form, inflectional-

form, derivational-form and compound-form frequencies of 10,247 Turkish simplex 

noun roots. 

 

3.4.14  Visualize 4D frequencies  

Based on the data prepared in Section 3.4.13, Figure 7 visualizes the four frequencies 

of all simplex nouns of Turkish in three-dimensional space. Each of the 10,247 data 

points represents a simplex noun. The x, y and z axes represent the frequencies of 

inflectional forms, derivational forms and –(s)I compound forms, respectively, while 

color represents the frequency of the bare root (“hot” colors: high frequency, “cold” 

colors: low frequency). 

Probably the most salient characteristic of the distribution is the positive 

correlation between the four frequency measures. The correlation matrix is shown in 

Table 11. 

  



77 
 

Table 11.  Correlation Between the Four Frequency Measures 

 

 

 

 

 

A second observation is that the “word cloud” gets thinner as frequency 

increases. This is a visual confirmation of Zipf (1949): There is a large number of 

low-frequency events and a small number of high-frequency events. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Four-dimensional frequency distribution of Turkish simplex nouns 

 

This concludes the discussion on the preparatory quantitative work that had to 

be done in order to design and implement the experiments described in Chapter 4. 

Most of the work described up to this point has been independent of the experiments, 

 Root Inflectional Derivational Compound 

Root  +0.68 +0.35 +0.47 

Inflectional   +0.31 +0.65 

Derivational    +0.25 

Compound     
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and have general applicability. The resulting datasets can be used as general 

language resources.   
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CHAPTER 4 

METHODOLOGY AND THE EXPERIMENTS 

 

This chapter describes the design of an online platform for conducting lexical 

decision experiments outside the laboratory environment, and the design, 

implementation, and results of two lexical decision experiments using the same 

online platform. 

 

4.1  Designing a platform for online experiments 

For the reasons mentioned in Section 3.1.3, the experiments have been conducted 

online. The following sections describe the software platform developed for this 

purpose, and the relevant experiment design decisions. 

 

4.1.1  Using the ‘jsPsych’ JavaScript library  

jsPsych is a publicly available JavaScript library for “creating and running behavioral 

experiments in a web browser”.30 The highly customizable open-source library offers 

built-in functionality for displaying instructions, presenting stimuli and measuring 

response times (de Leeuw, 2015). 

 

4.1.2  Personal and demographic data  

To participate in the experiments, subjects are required to fill in the registration form 

in Figure 8. In addition to providing basic information regarding the experiment and 

its purpose, the registration form collects gender, age, handedness, education and 

                                                           
30 The library and related documentation is available at www.jspsych.org. 
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native-language data from participants. The relationships between these variables 

and response times is an interesting issue, but will not be discussed in this study. 

 

 

 

 

 

 

Figure 8.  Registration page for participants 

 

4.1.3  Choice of keys  

Subjects in a lexical decision experiment are asked to press either the ‘yes’ button or 

the ‘no’ button. In an online experiment, these will have to be two keys on the 

subject’s own keyboard. Considering that we require subjects to be native speakers 

of Turkish, a straightforward choice would be to use ‘E’ for ‘yes’ (evet in Turkish) 

and ‘H’ for ‘no’ (hayır in Turkish). But in an online experiment, the experimenter 

has no control over the subjects’ keyboard layouts: Some might be using a standard 

QWERTY keyboard, others might be using some version of the “Turkish-F 

keyboard”, while still others use some other unknown layout. 

A second complication is related to handedness: A pilot study conducted 

before the first experiment revealed that subjects tended to prefer pressing the ‘yes’ 

button with their dominant hand, and the ‘no’ button with their non-dominant hand, 

regardless of button position. Several pilot study subjects have declared that pressing 

the ‘yes’ button with their non-dominant hand “felt awkward/difficult”. To be able to 

systematically investigate this anecdotal handedness effect, the position of the ‘yes’ 

and ‘no’ keys have been randomized in all experiments: Subjects were randomly 
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assigned to one of the two setups. A similar approach has been adopted by Snodgrass 

& Jarvella (1972) and Rice & Robinson (1975). 

To measure the effect of handedness on response times, we also need to make 

sure that the subjects use separate hands for the two buttons. Using the keys for 

letters, whose position on the keyboard is unknown, is therefore not a viable option. 

A reasonable choice would be to use ‘1’ for ‘yes’ and ‘0’ for ‘no’. But ‘1’ and ‘0’ are 

not neutral numbers: Subjects would probably tend to assume that ‘1’ represents 

‘yes’ and ‘0’ represents ‘no’, and would get confused when asked to press ‘1’ for 

‘no’ and ‘0’ for ‘yes’. 

To summarize, we need two non-letter buttons with relatively stable positions 

across keyboard models, minimum symbolic content and maximum physical distance 

from each other. The optimum choice seems to be ‘2’ and ‘9’. 

 

4.1.4  Lowercase vs. uppercase   

The earlier stages of the lexical decision task probably involve purely visual pattern 

recognition (Dehaene, 2009). This means that the physical features of letters might 

introduce unintended visual biases, thus confounding response time measurements. 

Considering that there exist significant visual differences between several lowercase 

and uppercase letters of the Latin alphabet (compare, for instance, the pairs a-A, b-B, 

d-D, e-E, g-G, l-L, r-R), we used two sets of stimuli, one containing lowercase letters 

and the other their uppercase versions. 
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4.1.5  Randomization of the order of stimuli  

To prevent earlier stimuli from affecting the processing of subsequent stimuli in 

unexpected ways, the order of presentation has been randomized for each subject, 

using the randomization module of the jsPsych library. 

 

4.1.6  Within-subjects design  

Both experiments reported in this study use a “within-subjects / repeated-measures” 

design, which is the typical experimental design in the field of memory and 

language. 

What are the benefits of a “within-subjects / repeated-measures” design? 

Imagine that the high-frequency stimuli were given to a group of 50 people, and the 

low-frequency stimuli to a an entirely different group of 50 people. In this case, 

random differences between the individuals in the two groups would be a 

confounding factor: Subjects in the first group can, by pure chance, be younger, more 

intelligent, less-educated, etc. than subjects in the second group, or vice versa, which 

would have an unintended impact on the mean response times of the two groups. In a 

within-subjects / repeated-measures design, by contrast, the same person is exposed 

to both the high-frequency stimuli and the low-frequency stimuli. In other words, 

every subject serves as his/her own control, thus eliminating the possibility of chance 

differences between subjects (Raaijmakers, Schrijnemakers & Gremmen, 1999, p. 

416). 

 This concludes the description of the experimental setup that has been used in 

both lexical decision experiments. The sections that follow describe the specific 

details of these experiments, and their results. 
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4.2  Experiment 1 

The first experiment asks the most basic question possible: Is there any frequency 

effect at all in the visual processing of Turkish words? Frequency effect is probably 

the most well-established outcome of psycholinguistic research, but its existence in 

Turkish has not been adequately demonstrated before, to the best of our knowledge.31 

The following sections describe the issues that have been taken into consideration 

while designing the experiment. 

 

4.2.1 The collinearity issue  

As seen in Table 11 and Figure 7, all four frequency measures proposed in Section 

3.4.11 are highly correlated. This collinearity issue can be addressed in two ways: 

The first method would be to vary one of the frequency measures while 

keeping the other three constant. The main problem with this approach is that there 

wouldn’t be enough items to choose from, because fixing the three remaining 

frequency measures defines a small region within the word cloud in Figure 7, from 

which all stimuli must be selected. Furthermore, even if this sparsity problem is 

somehow overcome, most of the selected items would be atypical in terms of their 

frequency distribution, and an experimental result based on atypical stimuli cannot 

be generalized to the language as a whole. Another problem is that fixing the values 

of the three frequency measures at certain levels will inevitably involve arbitrary 

choices. 

A second, alternative method would be to allow the four frequency measures 

to covary. Visually, this corresponds to taking a sample from the core of the “word 

cloud” in Figure 7. The first advantage of this approach is that it solves the sparsity 

                                                           
31 See Section 2.4 of the literature review for a critique of existing studies. 
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problem described above. Secondly, this approach does not require the fixing of 

frequencies at arbitrary levels. Another major advantage is that the “core of the 

cloud” consists of the most typical words of the language, at least in terms of the four 

frequency measures visualized here. Finally, the “core of the cloud” is a well-defined 

concept in mathematical terms. In view of these advantages, this “core sampling” 

method has been used in Experiment 1. Figure 9 reproduces the word cloud in Figure 

7, where potential stimuli at the core of the cloud are represented by larger dots. 

 

 

 

 

 

 

 

Figure 9.  Potential stimuli located at the core of the word-cloud 

 

In mathematical terms, the above-described stimulus selection area can be 

described through principal component analysis (PCA), which finds the vectors 

(components) that have maximum variance in terms of the data points. The so-called 

“core of the cloud” lies along the first component discovered through PCA. 

  

4.2.2  Choosing the right diameter for the “sampling cylinder” 

Since Experiment 1 aims to test the existence of a frequency effect in the broadest 

possible sense of that term, the four frequency measures of the stimuli should covary 

to the maximum extent possible. Expressed statistically, the pairwise correlation 



85 
 

coefficients between the four frequency measures should be as close to 1.0 as 

possible. Geometrically, this means that the stimuli should be as close to the core of 

the word cloud as possible, i.e. the diameter of the “sampling cylinder” should be as 

small as possible.   

The six correlation coefficients calculated for the six possible pairs of the four 

frequency measures have already been shown in Table 11. These are the lowest 

possible values of the correlation coefficients because all “outlier” data points remain 

within the cylinder when diameter exceeds a certain level. As diameter is reduced, 

many of the outliers are excluded, and the correlation coefficients begin to increase. 

On the other hand, as the diameter of the sampling cylinder is reduced, the 

number of suitable candidates falls. In the extreme case where the diameter is 

reduced to zero, there are no items at all to include in the experiment. 

This trade-off requires the experimental selection of an optimum diameter, 

where there is an acceptably high correlation between the four frequency metrics and 

at the same time a sufficient number of stimulus candidates. Figure 10 shows the 

decrease in the six pairwise correlation coefficients and the increase in the number of 

candidates as diameter increases from 0.05 to 2.50. 

As can be seen in Figure 10, all six correlation coefficients are above 0.90 for 

diameter values smaller than 0.25. Moreover, setting the diameter of the sampling 

cylinder at 0.25 gives us 183 stimulus candidates to choose from. This is clearly 

sufficient considering that we want to choose 50 stimuli out of 183 candidates, and 

183C50 = 2.67 x 1045 is a huge number. Hence, setting the diameter at 0.25 seems to 

be a good choice. 
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Figure 10.  Correlation as a function of sampling cylinder diameter 

 

4.2.3  Control variables  

Following the literature on lexical decision experiments, the stimuli have been 

matched for (1) number of characters, (2) number of syllables, (3) mean bigram 

frequency, and (4) number of orthographic neighbors. 

 Although the first two variables are straightforward, the third and the fourth 

one might require some discussion: 

 The “mean bigram frequency” of the Turkish word kedi ‘cat’, for example is 

calculated as follows: The string kedi contains the three bigrams: k-e, e-d, and d-i, 

which occur 7,204,289, 7,127,686, and 15,186,164 times, respectively, in the BOUN 

Corpus. Thus the mean bigram frequency of kedi is equal to the sum of these three 

values, divided by three (29,518,139/ 3 = 9,839,379). 

 Ferrand et al. (2010) defines “orthographic neighborhood” as “words that 

differ by changing, adding, or deleting a letter or by swapping two adjacent letters” 

(Ferrand et al., 2010, p. 3). Davis, Perea, & Acha (2009), on the other hand, 

distinguish between five types of neighbors: (1) Substitution neighbors (e.g. gone – 
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done); (2) transposition neighbors (e.g. trail – trial); (3) neighbors once-removed, i.e. 

substitution+transposition (e.g. trial – trawl); (4) addition neighbors (e.g. dive – 

drive); (5) deletion neighbors (e.g. drive – dive). 

 This study uses the “KelimetriK” tool described by Erten, Bozşahin, & 

Zeyrek (2014) to calculate orthographic neighborhood sizes, because the tool covers 

four of the five types of neighbors described by Davis, Perea & Acha (2009) (only 

“neighbors once-removed” is not covered). 

 

4.2.4  Selection of two matched stimulus sets 

Stimuli used in the high-frequency and low-frequency conditions should be matched 

for the control variables mentioned in Section 4.2.3. This is arguably the most 

important step in the design of the experiment, because it eliminates the potential 

impact of confounding variables to the maximum extent possible, while varying the 

independent variable at the same time. However, it is extremely difficult, if not 

impossible, to perform this task manually. A custom-made algorithm has been 

designed to automate this critical step.32 

The brute-force algorithm first randomly selects 25 + 25 = 50 items from 

among the 183 candidates described in Section 4.2.2, where the frequencies of the 

first 25 items are all lower than the frequencies of the second 25 items. It then 

computes a single score that quantifies the difference between the two groups in 

terms of the means and standard deviations of the control variables. 

Before calculating this score, however, “feature scaling” is used to normalize 

the four frequency metrics, so that each frequency metric has a comparable effect on 

                                                           
32 There exist some proprietary and open-source algorithms and software tools that have been 

designed for similar purposes. See, for example, van Casteren & Davis (2007) for details of the 

“Match” algorithm. 
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the overall score. This normalization brings all frequency values to the range [0, 1], 

using the following formula: 

 

𝑓′ =
𝑓 − min(𝑓)

max(𝑓) − min(𝑓)
 

 

The score mentioned above is equal to the absolute difference between the 

means plus the absolute difference between the standard deviations of the frequency 

measures in the two groups. The smaller the score, the closer the two stimulus groups 

will be to each other in terms of their means and standard deviations. The algorithm 

performs millions of random trials and reports the stimulus groups that have the 

lowest score, or groups whose score is below a certain minimum value. 

The performance of the algorithm in selecting the stimuli of Experiment 1 can 

be seen by examining the last four rows of Table 12. 

 

4.2.5  Creation of non-words 

Experiment 1 contains 45 non-words in three categories: (1) phonotactically 

plausible non-words generated by the Turkish localization of the software tool 

“Wuggy”33 (e.g. netaet), (2) phonotactically plausible non-words generated by 

Wuggy plus an actual suffix (e.g. pasagınçlı), (3) random letter strings (e.g. möptd). 

The full list of these non-word stimuli is provided in Appendix I. 

  

                                                           
33 “Wuggy” is a software tool used for generating phonotatically valid pseudo-words for 

psycholinguistic experiments. It was originally developed by Keuleers & Brysbaert (2010) and uses 

an algorithm that decomposes words into their sub-syllabic components, and constructs bigram 

frequency chains using the full words’ onset, nucleus and coda patterns. The Turkish localization of 

Wuggy is described by Erten, Bozşahin, & Zeyrek (2014). 
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4.2.6  Training effect / fatigue effect  

Training effect is the phenomenon that, up to a certain point, subjects get better at 

performing the task presented to them during an experiment. This results in a 

continuous reduction in response times and error rates, not because of the intrinsic 

properties of the stimuli, but simply as a result of practice. The 20th stimulus of a 

lexical decision experiment, for instance, is on average processed faster and more 

accurately than the 10th stimulus, which in turn is processed faster and more 

accurately than the first stimulus, etc., regardless of the nature of the stimuli in 

question (see, for example, Howes & Solomon, 1951, p. 407). 

Fatigue effect refers to a similar phenomenon: After a certain point, the 

subjects get tired and begin to lose interest in the experimental task. The result is a 

reversal of the training effect, evidenced by a gradual increase in response times and 

error rates. 

The training effect can be minimized (a) by adding a training section at the 

beginning of the experiment and explicitly telling the subjects that this section is for 

training and will not affect the results; and/or (b) by examining experiment results 

and accordingly removing the first n items from the experiment, until the point the 

training effect disappears. In the present study, we used a 10-item training section at 

the beginning of the experiments. 

 

4.2.7  Two sets of stimuli  

To minimize the generalizability problem described in Section 3.1.2, the automatic 

stimulus selection algorithm described in Section 4.2.4 has been run twice, to obtain 

two disjoint sets of stimuli that satisfy the relevant criteria of the experiment, and the 

two sets have been randomly assigned to participants. The two have similar 

characteristics in terms of the independent variable (frequency) and the control 
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variables (described below), but none of the words in one set appears in the other. 

The hope is that this will further reduce the impact of uncontrolled chance factors. In 

a sense, in each experiment, there are two experiments that replicate each other. This 

is also a demonstration of the validity of the stimulus selection mechanism described 

here. 

Experiment 1 has the following 2 x 2 x 2 = 8 versions, and the computer 

randomly chooses one of them as the subject presses the start button: 

Version 1: Stimulus Set 1, lowercase, ‘yes’ button on left 

Version 2: Stimulus Set 1, lowercase, ‘yes’ button on right 

Version 3: Stimulus Set 1, uppercase, ‘yes’ button on left 

Version 4: Stimulus Set 1, uppercase, ‘yes’ button on right 

Version 5: Stimulus Set 2, lowercase, ‘yes’ button on left 

Version 6: Stimulus Set 2, lowercase, ‘yes’ button on right 

Version 7: Stimulus Set 2, uppercase, ‘yes’ button on left 

Version 8: Stimulus Set 2, uppercase, ‘yes’ button on right 

 

4.2.8  No fillers 

No filler items have been used in Experiment 1. The motivation is to limit the 

average duration of the experiment, thus reducing dropouts. However, it should be 

admitted that the absence of filler items will make it easier for the subjects to guess 

the purpose of the experiment, thus gaining a better ability to develop unpredictable 

response strategies, and as a result confounding the results. 
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4.2.9  Stimuli of Experiment 1 

50 real words have been used in Experiment 1. Although using a larger number of 

words would have been better in terms of statistical power, the number has been 

limited considering that this is an online experiment where all participants join 

voluntarily, and would not be motivated to spend more than a few minutes in front of 

the computer. 

The stimulus matching algorithm described in Section 4.2.4 has selected the 

(25 + 25) x 2 = 100 nouns in Appendix J to serve as the two disjoint stimulus sets of 

Experiment 1. 

The means and standard deviations calculated for the four elements of the 

independent variable (various measures of word frequency) and the four controlled 

variables are shown in Table 12. 

 

Table 12.  Means and Standard Deviations of Independent and Control Variables 

 STIMULUS SET 1 STIMULUS SET 2 

 Low frequency High frequency Low frequency High frequency 

Variable MEAN STD MEAN STD MEAN STD MEAN STD 

Root freq. 723 435 11228 13297 522 422 14003 12240 

Inflected forms freq. 388 268 6960 8307 322 286 8045 8868 

Derivational forms freq. 35 27 631 637 28 24 994 1056 

Compound forms freq. 227 139 5937 6950 194 201 8617 8871 

Word length 5.60 1.44 5.60 1.44 5.76 1.36 5.76 1.45 

Number of syllables 2.32 0.73 2.32 0.79 2.24 0.71 2.24 0.81 

Mean bigram frequency 135 92 139 92 145 92 142 97 

Orthographic neighbors 4.00 5.61 4.16 5.62 3.72 5.29 3.68 5.30 
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4.3  Results of Experiment 1 

The first experiment has been completed 664 times34. As will be described in Section 

4.3.1, below, 182 of the subjects have been removed from the results since their 

accuracy was below 90%. Thus, demographic data will be reported only for the 

remaining 482 subjects: 

 (1) In 431 of the trials (89.4%), the subject reported to be right-handed, and in 

51 trials (10.6%) left-handed. 

(2) In 230 trials (47.7%), the subject reported to be male, and in 243 (50.4%) 

female, while in 9 cases (1.9%) the subject preferred not to specify any gender. 

(3) In 391 trials (81.1%), the subject reported to speak only one native-

language (Turkish), and in 57 cases (18.9%) more than one native-language 

including Turkish. 

Figure 11 shows the distribution of the subjects by age, Table 13 the 

distribution of the subjects by education level, and Table 14 the distribution of the 

subjects between the experiment’s eight versions. 

 

 

 

 

 

 

 

Figure 11.  Distribution of subjects by age (Experiment 1) 

                                                           
34 We cannot claim that the experiment has been completed by 664 different individuals since the 

experiment was conducted online and no measures have been taken to prevent the same person from 

completing the experiment more than once. The same uncertainty also applies to the demographic 

information provided by the subjects.  
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Table 13.  Distribution of Subjects by Education Level (Experiment 1) 

Primary-school  13 Secondary-school 4 

High-school  38 Pre-graduate 29 

Undergraduate 203 Master’s degree 109 

Ph. D. 86   

 

Table 14.  Distribution of Subjects by Experiment Version (Experiment 1) 

Version # Version # 

1 49 5 66 

2 81 6 46 

3 60 7 68 

4 55 8 57 

 

4.3.1  Outlier removal and response time adjustment 

Before proceeding to the statistical analysis of results, we first discuss how outliers 

have been removed and how response times have been adjusted to accommodate for 

the delay caused by the jsPsych library used in the experiment: 

All subjects with an accuracy below 90% (i.e. those who correctly responded 

to less than 85 of the 95 stimuli) have been removed from the results. Since 182 

subjects performed below 90%, only 482 subjects out of the 664 who completed the 

experiment have been included in the results. 

The overall accuracy of the 482 subjects to all stimuli of the experiment was 

93.5% The twelve stimuli in Table 15 have been removed from the results because at 

least one of their lowercase or uppercase versions had an accuracy rate below 80%.  
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Table 15.  Stimuli Removed from Experiment 1 Results due to Low Accuracy 

 

 

Interestingly, the lowest-performing twelve stimuli (out of 380) only contain 

the uppercase and lowercase versions of the same six stimuli (antrepo, danak, gaya, 

itrah, mene, and şimlik). This finding will be discussed in Chapter 5. 

In the next step, 27 ms has been deducted from all RT measurements based 

on the finding that the JavaScript technology used in the experiment results in a 26.8 

ms delay on the average (de Leeuw & Motz, 2016).     

 For each subject, all RT measurements that are more than two standard 

deviations above or below the mean RT of that particular subject have been removed 

from the results. 

Finally, the mean RTs of all subjects in a given version of the experiment 

have been recalculated following the above-mentioned removal of outlier RTs, and 

subjects whose mean RT is more than two standard deviations above or below the 

mean RT of all subjects who completed the same version have been excluded from 

Stimulus Versions Accuracy 

antrepo 1 & 2 67% 

ANTREPO 5 & 6 61% 

danak 3 & 4 70% 

DANAK 7 & 8 77% 

gaya 3 & 4 74% 

GAYA 7 & 8 71% 

itrah 1 & 2 75% 

İTRAH 5 & 6 76% 

mene 1 & 2 71% 

MENE 5 & 6 72% 

şimlik 1 & 2 68% 

ŞİMLİK 5 & 6 72% 
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the results. A total of 22 subjects have been removed in this way. Their distribution 

between the versions is shown in Table 16. 

 

Table 16.  Number of Subjects Removed from Experiment 1, by Version 

Version # Version # 

1 2 5 4 

2 4 6 2 

3 2 7 3 

4 1 8 4 

 

4.3.2  Descriptive statistics  

Tables showing descriptive statistics for the eight versions of Experiment 1 are 

available in Appendix N. 

 

4.3.3  Pairwise comparison of the conditions 

The mean RT values reported in the eight tables in Appendix N have been 

reproduced in Table 17 for convenience: 

 

Table 17.  Mean RT Values in the Five Conditions of Experiment 1 

Version Mean RT 

(LOW) 

Mean RT 

(HIGH) 

Mean RT 

(WUGGY) 

Mean RT 

(SUFFIX) 

Mean RT 

(RANDOM) 

1 

668 615 809 823 635 

2 

662 607 758 801 626 

3 

684 618 838 910 643 

4 

693 632 849 917 644 

5 

682 631 801 848 646 

6 

649 604 799 849 642 

7 

691 634 836 894 640 

8 

673 611 808 859 627 
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As can be seen in Table 17, the inequality in (1) holds for each of the eight versions 

of Experiment 1, without a single exception: 

 

(1) RT(SUFFIX) > RT(WUGGY) > RT (LOW) > RT (RANDOM) > RT(HIGH) 

 

4.3.4  Tests for normality  

The hypothesis that the mean values of two experimental conditions are significantly 

different from each other can be tested using the “paired-samples” version of the t-

test. In accordance with the normality assumption of this test, it should be checked in 

advance if the RT data in each of the conditions being compared is distributed 

“approximately” normally. The Shapiro-Wilk test has been used to test normality. 

The resulting p-values for the eight versions and five conditions of the experiment 

are shown in Table 18. 

 

Table 18.  p-values for the Shapiro-Wilk Normality Tests 

Version n p-value 

(LOW) 

p-value 

(HIGH) 

p-value 

(WUGGY) 

p-value 

(SUFFIX) 

p-value 

(RANDOM) 

1 48 0.064 0.062 0.011 0.013 0.074 

2 79 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

3 54 0.436 0.122 0.360 0.028 < 0.001 

4 53 0.248 0.079 0.020 0.002 0.008 

5 63 0.008 < 0.001 0.003 < 0.001 0.002 

6 47 0.009 0.060 0.121 0.132 0.091 

7 61 0.067 0.180 0.008 0.034 0.327 

8 50 0.004 0.195 0.003 0.002 0.017 
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Since the null-hypothesis of the Shapiro-Wilks test is that the data is 

distributed normally, we reject the normality hypothesis for those experiment 

conditions where the p-value is below α = 0.05 (confidence level 95%). As can be 

seen in Table 18, all eight versions contain at least one condition whose p-value is 

below 0.05. In other words, the distribution of RT data cannot be assumed to be 

normal in any of the test versions. Thus, using the t-test to see if there is a 

statistically significant difference between two conditions is not a feasible option. 

 

4.3.5  Wilcoxon signed-rank tests   

Considering the results of the Shapiro-Wilk Normality Test in Table 18, the 

Wilcoxon signed-rank test has been used to test the hypothesis that there is a 

statistically significant difference between mean RT differences for low-frequency 

and high-frequency words. The results are summarized in Table 19. 

 

Table 19.  Results of the Wilcoxon Test for Exp. 1 (HIGH vs. LOW) 

 

 

4.3.6  Significance, difference, and effect size  

“Statistical significance” only tests the existence of an effect, but does not tell us 

anything about the size or importance of that effect. One might obtain an arbitrarily 

Version n Test statistic p-value 

1 48 31.5 < 0.0000001 

2 79 69.5 < 0.0000001 

3 54 12.5 < 0.0000001 

4 53 4.5 < 0.0000001 

5 63 70.0 < 0.0000001 

6 47 36.0 < 0.0000001 

7 61 24.0 < 0.0000001 

8 50 23.5 < 0.0000001 
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low p-value in a significance test, but this only tells us that there is an extremely 

small probability that the observed difference is purely due to chance.  

A more meaningful analysis would be to look at the actual differences 

between the mean RTs obtained in the relevant two conditions. Although this is a 

better measure, it still does not tell us whether the observed effect is small or large, 

and also does not allow us to compare the effects observed in another pair of 

conditions, or in another experiment. 

To determine the relative size of the observed effect, one can calculate the 

variable known as “effect size”, which is a standardized measure independent of the 

absolute values measured in the experiment. Effect size is traditionally reported by a 

measure known as “Cohen’s D” in the literature. A Cohen’s D value around 0.20 is 

traditionally interpreted as indicating a “small” effect, a value around 0.50 is 

assumed to point to a “medium” effect, while a value around 0.80 indicates a “large” 

effect. 

P-values calculated for Experiment 1 have already been reported in Table 19, 

and show that there most probably exists an effect in all eight versions. Table 20 

below supports this data with the mean differences between the HIGH and LOW 

conditions, and the Cohen’s D measure. 
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Table 20.  Mean RT Differences and Effect Sizes for Exp. 1 (HIGH vs. LOW) 

Version Mean RT 

(LOW) 

Mean RT 

(HIGH) 

Mean Diff. 

(LOW - HIGH) 

Effect size 

(Cohen’s D) 

1 

668 615 53 0.50 

2 

662 607 55 0.51 

3 

684 618 66 0.74 

4 

693 632 61 0.59 

5 

682 631 51 0.45 

6 

649 604 45 0.47 

7 

691 634 57 0.49 

8 

673 611 62 0.63 

 

 

4.3.7  Overview of the results of Experiment 1  

Experiment 1 has produced extremely clear results: As mentioned in Section 4.3.3, 

the following inequality holds for all eight versions of the experiment, without a 

single exception: 

 

RT(HIGH) < RT(RANDOM) < RT(LOW) < RT(WUGGY) < RT(SUFFIX) 

 

In other words, high-frequency bare nouns like duman ‘smoke’ are the most 

rapidly processed among the stimuli in the five conditions, followed by random 

letter-sequences like  hdggıüok, low-frequency bare nouns like yosun ‘moss’, 

phonotactically plausible non-words like fekotan, and finally, pseudo-suffixed 

phonotactically plausible non-words like kürazarlık, which are the slowest. 

If we focus only on the HIGH and LOW conditions, which are the two 

conditions involved in Hypothesis 1, there is an extremely-statistically-significant 
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difference35 between the visual recognition times of the high-frequency words and 

the low-frequency words used in Experiment 1. Moreover, Table 20 shows that the 

observed effect is in the same direction for all versions (HIGH < LOW), and is 

between 45 and 66 milliseconds. More importantly, Table 20 also shows that this 

effect can be classified as a “medium-to-large” effect according to the traditional 

interpretation of the Cohen’s D measure. 

These results clearly support Hypothesis 1, which claims that high-frequency 

words in Turkish are recognized faster than low-frequency words, everything else 

being equal, and thus serves as evidence that there is a medium- to large-sized 

frequency effect in the visual recognition of bare Turkish nouns. 

This result is not very interesting in itself, though. The existence of strong 

frequency effects has been demonstrated countless times in the literature, for a wide 

range of typologically unrelated languages. The importance of the result lies in the 

facts that (a) this is, to our knowledge, the first experiment to demonstrate the 

existence of a frequency effect in Turkish; (b) all eight versions of the experiment 

have produced exactly the same result, thus demonstrating the validity and reliability 

of the general-purpose resources developed and the methodology used; (c) the 

experiment has been conducted online, achieving an unusually large sample-size of 

664 subjects, thus demonstrating the usefulness of the software platform developed 

for this study.  

                                                           
35 “Extremely-statistically-significant” means that the relevant p-value is less than 0.0001. Some 

researchers use four stars (****) to report such results (see, for example, http://www.graphpad.com/ 

guides/prism/7/statistics/index.htm?extremely_significant_results.htm. Retrieved on 6 September 

2016). 
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4.4  Experiment 2 

The first experiment has identified a clear frequency effect in the visual processing of 

bare nouns in Turkish. The second experiment investigates the visual processing of 

morphologically complex Turkish nouns. 

As in the first experiment, frequency is used as the independent variable, and 

response time as the dependent variable. But this time, the independent variable is 

the frequency of the suffix template rather than various measures of root frequency: 

Half of the real words consist of complex nouns made up of high-frequency suffix 

templates (e.g. +Loc+Pres+A1sg, which forms word-forms like evdeyim ‘I am at 

home’), and the other half consists of complex nouns made up of low-frequency 

suffix templates (e.g. +P2pl+Pres+A1sg, which forms word-forms like hocanızım ‘I 

am your teacher’), keeping several other variables under control. The first hypothesis 

of Experiment 2 can be formulated as follows: 

Hypothesis 1: The high-frequency group will be processed significantly faster 

than the low-frequency group. If the results support this hypothesis, and all other 

factors that may affect response times have been adequately controlled for, the only 

source of this difference can be the frequency of the suffix template. If response 

times are sensitive to the frequencies of the suffix templates, this means that suffix 

templates (rather than individual suffixes) are being used as effective processing 

units at some point of the word recognition process. This would constitute evidence 

that suffixes attached to nouns are not processed one-by-one but as chunks made up 

of several suffixes, as suggested by Frauenfelder & Schreuder (1992) and Durrant 

(2013). In other words, the brain of a native speaker of Turkish contains some 

representation of the suffix templates defined in Section 3.2.1. 
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Unlike the non-words in Experiment 1, the non-words in Experiment 2 have 

been designed for the purpose of testing the following additional hypothesis: 

 Hypothesis 2: Non-words made up of a pseudo-root and a real suffix 

template (e.g. gansien+diler) will be rejected faster than non-words made up of a 

real root and a pseudo-suffix-template (e.g. bıldırcın+ganıluf). This would constitute 

evidence that the parsing of complex Turkish words proceeds from left to right, as 

suggested by Hankamer (1989). 

 

4.4.1  Design decisions  

The following design decisions have been adopted to minimize confounds, maximize 

validity and reliability, and ensure maximum participation in the online experiment: 

 

4.4.1.1  Zero surface-frequency  

The complex word-forms used in the experiment do not occur in the BOUN Corpus. 

Thus, the subjects will most probably be exposed to the stimuli of Experiment 2 for 

the first time in their lives. In other words, surface-frequency has been controlled for 

by being eliminated from the picture. This design allows us to avoid the full-listing / 

whole-form route altogether, and study the parsing / decomposition route in isolation. 

 

4.4.1.2  Nouns only  

Experiment 2 has been limited to nouns, considering that verbs are subject to a 

separate set of rules in terms of inflection and derivation, and are morphologically, 

syntactically and semantically more complex than nouns. Another consideration is 

that the frequency effect identified in Experiment 1 was obtained for nouns. 
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4.4.1.3  Only animals, tools, and feelings as roots 

For the purpose of eliminating root-related (mainly semantic) confounds to the 

maximum extent possible, the stimuli of Experiment 2 have been generated by 

combining the suffix templates with names of animals in Set 1, with names of edible 

plants in Set 2, and with names of tools and household items in Set 3. 

This design ensures that stimuli within the same set have similar semantic 

features, thus reducing the impact of any semantic confounds within the set, while 

stimuli across sets are as semantically different as possible, thus making it 

intentionally more difficult to obtain similar results from the three sets, and thus 

increasing validity. 

 

4.4.1.4  Zero neighbors 

All roots used in the experiment have zero orthographic neighbors. In other words, 

none of the roots can be transformed into another valid Turkish word by adding, 

deleting or changing a single letter. This design decision is aimed at controlling 

orthographic confounds to a certain extent. The roots shown in Appendix K have 

been selected as a result. 

 

4.4.1.5  Use roots twice  

In an attempt to further eliminate root-related confounds, each of the animal, plant 

and tool names mentioned above have been used twice in the respective real-word 

conditions, once attached to a low-frequency suffix template and once attached to a 

high-frequency suffix template. In other words, the high-frequency condition and the 

low-frequency condition use the same set of roots. 
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4.4.1.6  Avoid the accusative-possessive ambiguity 

To reiterate, the accusative-possessive ambiguity described in Section 3.3.3 affects 

nouns ending in a consonant: The inflected word insanı (= insan+ı), for example, is 

ambiguous in that the second morpheme can be interpreted either as an accusative 

marker or a possessive marker, giving rise to the two parses insan+Acc and 

insan+P3sg. To avoid this ambiguity, roots ending in a vowel have been preferred 

whenever the relevant suffix template begins with the compound marker -(s)I (P3sg). 

For example, the vowel-ending root kanguru ‘kangaroo’, rather than the consonant-

ending root akrep ‘scorpion’, has been preferred for the suffix template 

+P3sg+Loc+While, resulting in the unambiguous word-form kangurusundayken, 

instead of the (at least temporarily) ambiguous word-form akrebindeyken. 

 

4.4.1.7  Two or three suffixes 

The stimuli selected for Experiment 2 initially contained between one and seven 

suffixes. However, an informal pilot study using these stimuli has shown that most 

subjects took a very long time to finish the experiment (up to 15 minutes, compared 

to approximately 4 minutes in Experiment 1), and reported that the words were ‘too 

long and difficult’. With this anecdotal evidence in mind, and also in view of the 

increased difficulty of matching for the control variables when the stimuli contain 

anything between zero and seven suffixes, the maximum number of suffixes has been 

forced to be three. Indeed, a second pilot study conducted after the introduction of 

this limitation has shown that the subjects no more complained about the difficulty 

and length of the stimuli, and finished the experiment within a time period 

comparable to Experiment 1. 
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4.4.1.8  Avoid Agt, Ness, With, Without 

As mentioned in Section 3.4.12, the root dictionary of the morphological 

disambiguator is inconsistent in its treatment of derived forms: It arbitrarily treats 

some derived forms as complex stems and some others as simplex roots, although the 

two have identical structures (e.g. telsizcilik ‘the profession of a radio operator’ and 

oyunculuk ‘the profession of an actor’). This problem especially affects the highly 

productive derivational suffixes Agt, Ness, With and Without. 

These four derivational suffixes have been avoided while selecting suffix 

templates for Experiment 2, since they are involved in a large number of 

lexicalizations with varying degrees of opacity, and are thus more likely to appear 

more frequently than other suffixes in the disambiguator’s imperfect “root 

dictionary”. 

In fact, of the 10,414 roots removed from the dictionary, 3,215 are 

combinations of these 4 derivational suffixes. The breakdown is shown in Table 21. 

 

Table 21.  Stems That Contain Agt, Ness, With and Without 

Form # of types 

R+Ness 947 

R+Agt+Ness 888 

R+Agt 805 

R+Without+Ness 409 

R+With 85 

R+With+Ness 81 

TOTAL 3,215 
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4.4.1.9  Same suffix max. five times 

The algorithm that selects matched suffix-templates for the two conditions of 

Experiment 2 initially did not involve any limitation as to the maximum number of 

times a given experimental condition contains a given suffix. In other words, nothing 

prevented the algorithm from selecting, say, fifteen of the twenty suffix-templates in 

a condition from among templates that contain the suffix Acquire. This would mean 

that an experimental condition could be dominated by a single suffix, along with its 

orthographic, phonological, syntactic and semantic idiosyncrasies. 

 To prevent domination by any one suffix, the following additional 

requirement has been added to the template matching algorithm: the same suffix can 

appear at most five times among the twenty templates that constitute an experimental 

condition. This upper limit has been determined experimentally, and reflects the 

trade-off between the desire to minimize the number of occurrences of a single suffix 

in the same condition, and the need to have a sufficient number of candidates that 

can be used as stimuli. 

 

4.4.1.10  Maximum difference three 

The requirement described in Section 4.4.1.9 solves the domination problem to a 

certain extent, but there is another problem: What if a suffix occurs five times in the 

high-frequency group, but only once in the low-frequency group, for example? The 

orthographic, phonological, syntactic and semantic idiosyncrasies of that suffix 

would have a five-fold impact on the high-frequency group compared to the low-

frequency group. 

 To minimize this confounding effect, the following additional requirement 

has been added to the template–matching algorithm: the difference between the 



107 
 

number of times a given suffix occurs in an experimental condition and the number 

of times the same suffix occurs in the other experimental condition has been limited 

to three. Once again, this upper limit has been determined experimentally, and 

reflects the trade-off between the desire to minimize said difference, and the need to 

have a sufficient number of candidates that can be used as stimuli. 

  

4.4.1.11  Only 40 stimuli  

20 + 20 = 40 real-word stimuli have been used in Experiment 2, compared to the 25 

+ 25 = 50 in Experiment 1. The reason for this 20% reduction is that the stimuli used 

in Experiment 2 are much more complex than those used in Experiment 1. This poses 

the risk of considerably increasing the time it would take subjects to complete the 

experiment, thus increasing the rate of dropouts, i.e. unfinished experiments. 

Obviously, using fewer stimuli reduces the statistical power of the experiment. 

 

4.4.1.12 No fillers 

As in Experiment 1, no filler items have been used in Experiment 2. Once again, this 

decision will probably increase participation in the experiment by making it 

considerably shorter, but will also make it easier for subjects to guess the purpose of 

the experiment, thus possibly reducing the validity of the results. 

 

4.4.1.13  Limit child frequency 

The correlation coefficients between the independent variable (suffix-template 

frequency) and the sixteen remaining template variables described in Section 3.2.4 

are shown in Table 22. 

  



108 
 

Table 22.  Correlation Btw. Independent Var. and Control Variables in Exp. 2 

Parameter Corr. Parameter Corr. 

parent_count -0.03 bi_count -0.08 

parent_freq -0.01 bi_mean +0.04 

*child_count* +0.88 tri_count -0.07 

*child_freq* +0.86 tri_mean +0.10 

sib_count +0.05 inf_count +0.05 

sib_freq +0.14 drv_count -0.03 

uni_count -0.07 blocking -0.03 

uni_mean +0.01 length -0.06 

 

As can be seen in Table 22, the independent variable (suffix-template 

frequency) is highly correlated with the control variables child_count (number of 

child nodes) and child_freq (total frequency of child nodes). This makes it difficult to 

match the two stimulus sets for the two control variables in question. To control for 

child_count and child_frequency, the matching algorithm uses the additional 

requirement that the ratio of child_freq to template frequency does not exceed 0.20. 

This ratio has been determined experimentally: The lower the ratio, the better child 

frequency will be controlled for. On the other hand, the lower the ratio, the fewer 

stimulus candidates will remain. The ratio 0.20 establishes an experimentally 

determined balance between the desire to control for a variable that is highly 

correlated with the independent variable and the need to find a sufficient number of 

stimuli.36  

 

                                                           
36 To clarify, there is a very high positive correlation between the number of times the corpus 

contains, for example, the suffix template +P3sg+Loc+Rel+A3pl (which generates word-forms such 

as arabasındakiler), and the number of “child-templates” that begin with the same template (e.g. in 

word-forms like arabasındakilerle, arabasındakilermişcesine), as well as the total number of times 

such child-templates occur in the corpus. This correlation is probably just another expression of the 

correlation demonstrated between roots, inflected-forms, derived-forms and compound-forms in 

Section 3.4.13. 
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4.4.1.14  Control variables  

Stimuli in the two conditions have been matched for the 16 template parameters 

described in Section 3.2.4, as well as the mean letter-bigram and letter-trigram 

frequencies of the root-template combination. Table 23 shows the relevant means 

and standard deviations across the two conditions of the experiment. 

 

Table 23.  Means and Std. Deviations in Experiment 2 (HIGH & LOW) 

 ARITHMETIC MEAN STD. DEVIATION 

Variable High Freq. Low Freq. High Freq. Low Freq. 

Template Frequency* 12,784 1,426 10,783 701 

Parent Count 1.95 1.95 0.67 0.67 

Total Parent Frequency 71,529,909 72,015,072 6,356,508 6,367,672 

Child Count 2.90 1.90 3.33 2.53 

Total Child Frequency 188,500 56,400 398,984 92,125 

Sibling Count 11.55 10.80 6.48 6.69 

Total Sibling Frequency 1,597,382 1,541,580 4,369,072 4,396,925 

Template Unigram Count 2.65 2.65 0.48 0.48 

Mean Template Unigram Frequency 10,529,172 9,910,446 8,449,962 8,651,270 

Template Bigram Count 3.65 3.65 0.48 0.48 

Mean Template Bigram Frequency 5,033,371 4,069,153 3,938,471 3,769,465 

Template Trigram Count 2.65 2.65 0.48 0.48 

Mean Template Trigram Frequency 272,502 257,494 551,867 561,769 

Inflectional Suffixes 2.00 2.00 0.71 0.77 

Derivational Suffixes 0.50 0.50 0.74 0.74 

Blocking Position 0.90 0.90 0.54 0.62 

A
N

IM
A

L

S
 

Mean Letter Bigram Freq. 11,832,965 10,914,101 3,536,054 3,431,335 

Mean Letter Trigram Freq. 1,914,670 1,695,827 890,090 730,542 

Root+Template Length 13.50 13.35 2.46 1.90 

P
L

A
N

T
S

 Mean Letter Bigram Freq. 11,547,812 11,112,942 2,778,426 2,790,900 

Mean Letter Trigram Freq. 1,990,518 1,895,101 808,445 687,512 

Root+Template Length 13.50 13.45 2.04 1.60 

T
O

O
L

S
 Mean Letter Bigram Freq. 11,999,300 11,112,428 2,751,607 2,834,529 

Mean Letter Trigram Freq. 2,139,989 1,920,523 835,091 606,650 

Root+Template Length 13.10 13.00 2.66 2.17 

* = independent variable 
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4.4.1.15  Minimize interpretability 

The roots listed in Appendix K have been combined with the suffix templates listed 

in Appendix L manually. This is the only manual step in the generation of stimuli for 

Experiment 1 and Experiment 2. Although we must admit that this manual matching 

involves a certain risk of biased stimulus selection, best efforts have been made to 

avoid any bias. The root-suffix template combinations have been chosen such that 

the resulting word form is as uninterpretable as possible. For example, the suffix-

template +Acquire+Pass+Past would form a much more interpretable word-form 

when combined with the root poşet ‘bag’ (i.e. poşetlenildi ‘it has been bagged’), 

compared to the root kiremit ‘roof tile’ (i.e. kiremitlenildi ‘?it has been roof-tiled’). 

This is why kiremit ‘roof tile’ has been preferred and poşet ‘bag’ avoided for this 

particular suffix-template. The resulting stimulus sets are shown in Appendix L 

 

4.4.1.16  Generation of non-words 

Experiment 2 contains 45 non-words in the following three categories, which have 

already been briefly described in Section 4.4: 

(1) The ‘PP’ condition: 15 non-words where a pseudo-root is combined with 

a pseudo-suffix-template (e.g. kındün+matgadan based on kunduz+lanmadan); 

(2) the ‘PR’ condition: 15 non-words where a pseudo-root is combined with a 

real suffix template (e.g. gansien+diler based on penguen+diler); 

(3) the ‘RP’ condition: 15 non-words where a real root is combined with a 

pseudo-suffix-template (e.g. bıldırcın+ganıluf based on bıldırcın+lanılır). 

All pseudo-roots and pseudo-suffix-templates have been generated by 

Wuggy, based on real roots and real suffix templates used in the experiment. 

 



111 
 

4.4.1.17  Modified instructions 

As revealed by an informal pilot study, standard lexical decision instructions prove 

inadequate in Experiment 2. Since all “real words” used in this experiment are novel 

combinations with zero surface-frequency, subjects are confused when they are 

simply told to press ‘yes’ if what they see on the screen is a “valid word in Turkish”, 

because they tend to think that a word is only valid when they have been exposed to 

it before, or at least when they can make sense of it. To avoid this confusion, the 

(inevitably complicated and long) instructions in Appendix M have been used. 

 

4.4.2  The twelve version of Experiment 2 

In accordance with the seventeen design decisions described in Section 4.4.1, 

Experiment 2 has the following 3 x 2 x 2 = 12 versions, and the computer randomly 

chooses one of them as the subject presses the start button: 

Version 1: Animals as roots, lowercase letters, ‘yes’ button on left 

Version 2: Animals as roots, lowercase letters, ‘yes’ button on right 

Version 3: Plants as roots, lowercase letters, ‘yes’ button on left 

Version 4: Plants as roots, lowercase letters, ‘yes’ button on right 

Version 5: Tools as roots, lowercase letters, ‘yes’ button on left 

Version 6: Tools as roots, lowercase letters, ‘yes’ button on right 

Version 7: Animals as roots, uppercase letters, ‘yes’ button on left 

Version 8: Animals as roots, uppercase letters, ‘yes’ button on right 

Version 9: Plants as roots, uppercase letters, ‘yes’ button on left 

Version 10: Plants as roots, uppercase letters, ‘yes’ button on right 

Version 11: Tools as roots, uppercase letters, ‘yes’ button on left 

Version 12: Tools as roots, uppercase letters, ‘yes’ button on right 
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4.4.3  Predictions 

The two hypotheses described in Section 4.3 have been repeated here for 

convenience: 

Hypothesis 2: Everything else being equal, the time it takes a native speaker 

of Turkish to visually recognize a morphologically complex Turkish noun decreases 

as the frequency of the suffix-template increases. 

Hypothesis 3: Everything else being equal, the time it takes a native speaker 

of Turkish to reject a non-word that starts with a meaningless letter-sequence but 

ends with a valid sequence of suffixes (e.g. gansien+lerinizin) is shorter than the 

time it takes a native speaker of Turkish to reject a non-word that starts with a valid 

root but ends with meaningless letters (e.g. bıldırcın+ganfirmaş). 

In other words, Hypothesis 2 predicts that mean RTs in the ‘HIGH’ condition 

will be significantly lower than mean RTs in the ‘LOW’ condition in all 12 versions 

of Experiment 2. Similarly, Hypothesis 3 predicts that mean RTs in the ‘PR’ 

condition will be significantly lower than mean RTs in the ‘RP’ condition in all 12 

versions of Experiment 2. 

 

4.4.4  Results of Experiment 2  

A total of 1,996 subjects have completed Experiment 2. In other words, 1,996 x 70 = 

139,720 response time measurements have been collected.37 To the best of our 

knowledge, Experiment 2 is by far the largest-scale psycholinguistic experiment on 

Turkish so far. 

                                                           
37 As in Experiment 1, we cannot claim that the experiment has been completed by 1,996 different 

individuals since the experiment was conducted online and no measures have been taken to prevent 

the same person from completing the experiment more than once. The same uncertainty also applies to 

the demographic information provided by the subjects.  
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As will be discussed in Section 4.4.4.1 below, 578 of the subjects have been 

removed from the results since their accuracy was below 90%. Thus, demographic 

data will be reported only for the remaining 1,418 subjects: 

(1) In 1,201 of the trials (84.7%), the subject reported to be right-handed, and 

in 217 trials (15.3%) left-handed. 

(2) In 729 trials (51.4%), the subject reported to be male and in 665 (46.9%) 

female, while in 24 cases (1.7%) the subject preferred not to specify any gender. 

(3) In 1,223 trials (86.3%), the subject reported to speak only one native-

language (Turkish), and in 195 trials (13.7%) more than one native-language 

including Turkish. 

Figure 12 shows the distribution of subjects by age, Table 24 the distribution 

of subjects by education level, and Table 25 the distribution of subjects between the 

experiment’s twelve versions. 

 

 

 

 

 

 

Figure 12.  Distribution of subjects by age (Experiment 2) 

 

Table 24.  Distribution of Subjects by Education Level (Experiment 2) 

Primary-school  59 Secondary-school 18 

High-school  141 Pre-graduate 64 

Undergraduate 680 Master’s degree 318 

Ph. D. 138   
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Table 25.  Distribution of Subjects by Experiment Version (Experiment 2) 

Version # Version # Version # Version # 

1 123 4 119 7 107 10 123 

2 114 5 103 8 139 11 105 

3 154 6 115 9 122 12 94 

 

4.4.4.1  Outlier removal and response time adjustment 

Before moving on to the statistical analysis of results, we first discuss how outliers 

have been removed and how response times have been adjusted to accommodate for 

the delay caused by the jsPsych library used in the experiment: 

All subjects with an accuracy below 90% (i.e. those who correctly responded 

to less than 63 of the 70 stimuli) have been removed from the results. Since 578 

subjects performed below 90%, only 1,418 subjects out of the 1,996 who completed 

the experiment have been included in results. Overall accuracy of the 1,481 subjects 

to all stimuli of the experiment is 96.6%. 

The eight stimuli in Table 26 have been removed from the results because at 

least one of their lowercase or uppercase versions had an accuracy rate below 80%.  

 

Table 26.  Stimuli Removed from Experiment 2 Results due to Low Accuracy 

 

 

Stimulus Versions Accuracy 

pırasayadır 3 and 4 63% 

PIRASAYADIR 9 and 10 73% 

zımbasınca 5 and 6 64% 

ZIMBASINCA 11 and 12 65% 

kurbağasınca 1 and 2 79% 

KURBAĞASINCA 7 and 8 82% 

kelesaldırlar 1 and 2 78% 

KELESALDIRLAR 7 and 8 82% 
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Interestingly, the lowest-performing eight stimuli (out of 420) only contain 

the uppercase and lowercase versions of the same four stimuli (pırasayadır, 

zımbasınca, kurbağasınca, and kelesaldırlar). This finding will be discussed in 

Chapter 5. 

In the next step, 27 ms has been deducted from all RT measurements based 

on the finding that the JavaScript technology used in the experiment results in a 26.8 

ms delay on the average (de Leeuw & Motz, 2016). 

 For each subject, all RT measurements that are more than two standard 

deviations above or below the mean RT of that particular subject have been removed 

from the results. 

Finally, the mean RTs of all subjects in a given version of the experiment 

have been recalculated following the above-mentioned removal of outlier RTs, and 

subjects whose mean RT is more than two standard deviations above or below the 

mean RT of all subjects who completed the same version have been excluded from 

the results. A total of 58 subjects have been removed in this way. Their distribution 

between the version is shown in Table 27. 

 

Table 27.  Number of Subjects Removed by Version (Experiment 2) 

Version # Version # Version # Version # 

1 3 4 4 7 3 10 10 

2 5 5 3 8 4 11 4 

3 10 6 5 9 4 12 3 

 

4.4.4.2  Descriptive statistics 

Tables showing descriptive statistics for the twelve versions of Experiment 2 are 

available in Appendix O. 
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4.4.4.3  Pairwise comparison of the conditions 

The mean RT values reported in the twelve tables in Appendix O have been 

summarized in Table 28 for convenience: 

 

Table 28.  Mean RT Values in the Twelve Conditions of Experiment 2 

Version Mean RT 

(HIGH) 

Mean RT 

(LOW) 

Mean RT 

(PP) 

Mean RT 

(RP) 

Mean RT 

(PR) 

1 

1238 1305 1396 1485 1294 

2 

1196 1272 1341 1447 1266 

3 

1145 1218 1318 1463 1386 

4 

1251 1300 1392 1546 1433 

5 

1327 1375 1382 1579 1547 

6 

1139 1215 1228 1436 1395 

7 

1327 1370 1520 1556 1405 

8 

1301 1365 1512 1546 1353 

9 

1204 1254 1414 1565 1478 

10 

1280 1342 1461 1681 1562 

11 

1330 1401 1384 1556 1530 

12 

1375 1446 1446 1576 1546 

 

As an analysis of Table 28 reveals, the following two inequalities hold for each of 

the twelve versions of Experiment 2, without a single exception: 

(2) RT(HIGH) < RT(LOW) 

(3) RT(PR) < RT(RP) 

Moreover, if we assume that a pairwise inequality between two conditions is 

valid if it is supported by at least eight of the twelve versions, we can assert the more 

ambitious inequality in (3)38: 

                                                           
38 PP < PR is supported by eight versions, LOW < PR by nine versions, and LOW< PP by ten 

versions. The remaining seven pairwise inequalities are supported by all twelve versions of the 

experiment. 
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(4) RT(H) < RT(L) < RT(PP) < RT(PR) < RT(RP) 

 

4.4.4.4  Tests for normality  

As in Experiment 1, the Shapiro-Wilk test has been used to test normality. The 

resulting p-values for the twelve versions and five conditions of Experiment 2 are 

shown in Table 29. 

 

Table 29.  p-values for the Shapiro-Wilk Normality Tests (Experiment 2) 

Version n p-value 

(HIGH) 

p-value 

(LOW) 

p-value 

(PP) 

p-value 

(RP) 

p-value 

(PR) 

1 119 0.004 0.078 0.001 0.110 < 0.001 

2 109 0.075 0.133 0.034 0.311 0.010 

3 144 0.030 0.528 0.003 0.256 0.003 

4 114 0.003 0.016 0.005 0.012 0.006 

5 98 0.053 0.102 0.014 0.502 0.026 

6 109 0.004 0.008 < 0.001 0.009 < 0.001 

7 101 0.088 0.040 0.003 0.038 0.008 

8 134 0.040 0.017 0.019 0.020 0.005 

9 116 0.118 0.133 0.015 0.054 0.006 

10 112 0.342 0.439 0.507 0.075 0.038 

11 101 0.012 0.043 0.001 0.056 0.006 

12 90 0.037 0.445 0.050 0.046  0.038 

 

Since the null-hypothesis of the Shapiro-Wilks test is that the data is 

distributed normally, we should reject the normality hypothesis for those experiment 

conditions where the p-value is below α = 0.05 (confidence level 95%). As can be 

seen in Table 29, all twelve versions contain at least one condition whose p-value is 

below 0.05. In other words, the distribution of RT data cannot be assumed to be 

normal in any of the test versions. Thus, using the paired-samples t-test to see if there 
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is a statistically significant difference between mean RTs in two conditions is not a 

feasible option. 

 

4.4.4.5  Wilcoxon signed-rank tests  

Considering the results of the Shapiro-Wilk normality test in Table 29, the Wilcoxon 

signed-rank test has been used to test the hypothesis that there is a statistically 

significant difference between mean RTs in two conditions of the experiment. The 

first analysis is for the “low-frequency suffix template” and “high-frequency suffix 

template” conditions (‘LOW’ vs. ‘HIGH’), whose results are summarized in Table 

30. The second analysis is for the “pseudo root + real suffixes” and “real root + 

pseudo suffixes” conditions (‘PR’ vs. ‘RP’), whose results are summarized in Table 

31. 

 

Table 30.  Results of the Wilcoxon Test for Experiment 2 (HIGH vs. LOW) 

 

 

  

Version n Test statistic p-value 

1 119 1604.5 < 0.001 

2 109 1518.0 < 0.001 

3 144 1924.0 < 0.001 

4 114 1765.5 < 0.001 

5 98 1505.5 < 0.001 

6 109 1123.0 < 0.001 

7 101 1605.0 < 0.001 

8 134 2444.0 < 0.001 

9 116 1993.5 < 0.001 

10 112 1612.0 < 0.001 

11 101 1155.0 < 0.001 

12 90 952.0 < 0.001 
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Table 31.  Results of the Wilcoxon Test for Experiment 2 (PR vs. RP) 

 

 

4.4.4.6  Effect sizes  

As in Experiment 1, Table 32 summarizes the mean difference between HIGH and 

LOW conditions, and the Cohen’s D measure calculated for each version of the 

experiment. Table 33 does the same thing for the PR and RP conditions. 

 

Table 32.  Mean RT Differences and Effect Sizes for Exp. 2 (HIGH vs. LOW) 

Version Mean RT 

(HIGH) 

Mean RT 

(LOW) 

Difference 

(ms) 

Effect size 

(Cohen’s D) 

1 1238 1305 67 0.17 

2 1196 1272 76 0.24 

3 1145 1218 73 0.22 

4 1251 1300 49 0.14 

5 1327 1375 48 0.12 

6 1139 1215 76 0.22 

7 1327 1370 43 0.12 

8 1301 1365 64 0.19 

9 1204 1254 50 0.16 

10 1280 1342 62 0.24 

11 1330 1401 71 0.24 

12 1375 1446 71 0.18 

 

  

Version n Test statistic p-value 

1 119 650.5 < 0.0001 

2 109 689.0 < 0.0001 

3 144 3162.5 < 0.0001 

4 114 1629.5 < 0.0001 

5 98 2139.0 0.310 

6 109 2299.0 0.048 

7 101 1014.0 < 0.0001 

8 134 1014.0 < 0.0001 

9 116 2006.5 < 0.0001 

10 112 1719.5 < 0.0001 

11 101 2150.0 0.197 

12 90 1723.0 0.192 
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Table 33.  Mean RT Differences and Effect Sizes for Exp. 2 (RP vs. PR) 

Version Mean RT 

(RP) 

Mean RT 

(PR) 

Difference 

(ms) 

Effect size 

(Cohen’s D) 

1 1485 1294 191 0,43 

2 1447 1266 181 0,50 

3 1463 1386 77 0,19 

4 1546 1433 113 0,26 

5 1579 1547 32 0,07 

6 1436 1395 41 0,09 

7 1556 1405 151 0,33 

8 1546 1353 193 0,47 

9 1565 1478 87 0,20 

210 1681 1562 119 0,34 

11 1556 1530 26 0,07 

12 1576 1546 30 0,07 

 

4.5  Results of Experiment 2  

Experiment 2 has produced extremely clear results that fully support Hypothesis 2, 

and relatively clear results that support Hypothesis 3 to a certain extent. As 

mentioned in Section 4.4.4.3, the following two inequalities hold for all twelve 

versions of the experiment, without a single exception: 

 

(2) RT(HIGH) < RT(LOW) 

(3) RT(PR) < RT(RP) 

 

In terms of Hypothesis 2, there is an extremely-statistically-significant 

difference between the visual recognition times of stimuli that contain high-

frequency suffix templates and stimuli that contain low-frequency suffix templates. 

Moreover, Table 32 shows that the observed effect is in the same direction for all 

versions (HIGH < LOW), and is between 43 and 76 milliseconds. Table 32 also 
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shows that this effect can be classified as a “small” effect according to the traditional 

interpretation of the Cohen’s D measure. 

These results clearly support Hypothesis 2, which claims that words 

containing high-frequency suffix templates are processed faster than words 

containing low-frequency suffix templates, everything else being equal. This 

supports the idea that there exist separate mental representations for frequently 

occurring suffix sequences (not individual suffixes but entire suffix bundles such as 

lAş+DIr+Il+mIş). This is in line with “usage-based” accounts of grammar, which 

claim that linguistic structure emerges from language use, i.e. from repeated 

exposure to certain constructions over time (Bybee, 2011, p. 69). 

In terms of Hypothesis 3, on the other hand, in eight of the twelve versions of 

the experiment, there is an extremely-statistically-significant difference between the 

visual recognition times of non-words where a pseudo-root is combined with a real 

suffix template (e.g. gansien+diler) and non-words where a real root is combined 

with a pseudo-suffix-template (e.g. bıldırcın+ganıluf). Moreover, Table 33 shows 

that the observed effect is in the same direction for all versions (PR < RP), and is 

between 26 and 193 milliseconds. Table 33 also shows that this effect can be 

classified as a “small- to medium-sized” effect according to the traditional 

interpretation of the Cohen’s D measure. 

The only problem is that the Wilcoxon test results for experiment versions 5, 

6, 11 and 12 do not support Hypothesis 3, as the relatively high p-values in Table 33 

show. Interestingly, these four are the only versions that use the “names of tools” set 

in Appendix K as roots. Several analyses on stimulus accuracies, subject accuracies, 

descriptive statistics, and sample size have been performed to understand the root 

cause of this problem, but no conclusion could be reached. The only thing that can be 
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said is that there seems to be something wrong with the “names of tools” set used 

exclusively in these four versions, and this could very well have a semantic reason. 

Apart from this problem, the results clearly support Hypothesis 3, which 

claims that the time it takes a native speaker of Turkish to reject a non-word that 

starts with a meaningless letter-sequence but ends with a valid sequence of suffixes 

(e.g. gansien+lerinizin) is shorter than the time it takes a native speaker of Turkish to 

reject a non-word that starts with a valid root but ends with meaningless letters (e.g. 

bıldırcın+ganfirmaş). This is in line with Hankamer’s (1989) claim that Turkish 

words are processed from left to right. 
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CHAPTER 5 

GENERAL DISCUSSION 

 

The experiments have provided statistical support for all three hypotheses defined at 

the outset. We now have some evidence that (a) more frequent simple words are 

processed faster than less frequent simple words, (b) complex words are probably 

parsed from left to right, and most importantly, (c) there probably exist mental 

representations for frequently occurring morpheme sequences. 

Before discussing the details of these three main findings, however, let us 

first report “secondary findings”. 

 

5.1  Secondary findings 

Several secondary findings have been obtained more or less incidentally during the 

course of this study, especially during the preparatory work described in Chapter 3. 

The following sections describe these findings. 

 

5.1.1  Frequency is complex 

“Word frequency” is a deceptively simple concept, especially when dealing with 

isolating languages like English. The true extent of the complexity of frequency 

becomes apparent in an agglutinating language like Turkish. 

 This study started with the few frequency metrics available in existing 

literature, e.g. surface frequency, base frequency, and family frequency. However, it 

soon became apparent that these metrics were not adequate for describing Turkish 

data. The end result has been a general notation that can be used to define around 90 

different measures of word frequency (see Section 3.2.2 for details). Although the 

proposed notation might need to be modified in several ways, this is, to our 
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knowledge, the first attempt to define the frequencies of Turkish words at this level 

of detail. 

 

5.1.2  Frequency measures are highly correlated 

As has been visually demonstrated in Figure 7, there is a high correlation between 

the number of times a noun occurs in its bare form, in inflectional forms, derivational 

forms, and -(s)I compound forms. Another correlation that has been discovered is the 

very high correlation between the newly-defined measure of template frequency, on 

the one hand, and the number and total frequency of that template’s children, on the 

other hand. This second correlation is probably just another appearance of the first 

correlation at the stem level. 

Any study that uses word frequencies as a variable must duly take into 

account these collinearity issues, because they have important implications in terms 

of experiment design, statistical analysis, and interpretation of results. 

 

5.1.3  Distributions are extremely uneven 

This study has empirically demonstrated that frequency distributions are extremely 

uneven at several levels, whether for letters, roots, suffixes, or their ngrams (see 

Appendices 2-8 for the relevant data). For example, although 7,733 nominal suffix 

templates are attested in the BOUN Corpus and many more are grammatically 

possible, the most frequent 200 nominal suffix templates listed in Appendix H 

account for 99.3% of all word-forms in the same corpus.39 

                                                           
39 Although not included in this study, the picture is probably similar at sub-lexical levels like 

syllables and syllable sequences, as well as supra-lexical levels like verb subcategorization 

preferences. 
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 One of the implications for future research is that, standard distributions in 

statistics literature (normal, binomial, exponential, beta, chi-square, etc.), and any 

tests and tools that assume such distributions, cannot be used when dealing with 

language data.40 

Another implication is that experimental stimuli must be selected with the 

utmost care, considering that the frequency differences between seemingly similar 

items can reach several orders of magnitude. For example, it sounds quite natural to 

assume that the obligative marker -mAlı and the aorist marker -(A/I)r/-z have similar 

frequency distributions, since both occupy the same slot of the Turkish verb (see 

Göksel & Kerslake, 2005, p. 73). However, as can be seen in Appendix E, the aorist 

occurs 5,184,027 times in the BOUN Corpus, while the obligative occurs only 

237,551 times, which means there is almost a 22-fold difference between their 

frequencies. In other words, stimuli in psycholinguistic experiments should not be 

selected simply based on grammatical properties; distributional properties that reflect 

language use must be taken into account. 

 

5.1.4  Most grammatical forms are never used 

This is probably the most interesting secondary finding of this study. If the 

calculation in Hankamer (1989) is correct, 9,192,472 forms can be generated from 

one noun root. In other words, the morphology of Turkish allows the generation of 

more than 9 million nominal suffix templates. When one counts the suffix templates 

in the BOUN Corpus, however, only 7,733 nominal suffix templates are attested. 

Considering that this corresponds to 0.00084% of all possible suffix templates, the 

                                                           
40 Lexical frequency distributions are better described by a type of distribution know as LNRE (Large 

Number of Rare Events) (see, for example, Khmaladze, 1988). 
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conclusion is that 99.99916% of possible suffix templates are never used in a corpus 

of almost 300 million words.41 

This empirical finding has important implications for the mental 

representation and processing of agglutinating languages like Turkish: The brain of a 

native speaker of Turkish who has been exposed to each and every word that occurs 

at least once in the BOUN Corpus does not need to store more than 9 million suffix 

templates, but only 23,346. 

When combined with the “uneven distributions” finding in Section 5.1.3, 

things get even more interesting: Since these 23,346 attested suffix templates are 

themselves distributed in an extremely uneven fashion, a native speaker can process 

the overwhelming majority of the word-forms he/she encounters simply by storing 

the most frequent few hundred suffix templates as undecomposed full-form entries.  

These empirical findings falsify Hankamer’s (1989) conclusion that, since the 

human brain does not have enough capacity to store all possible forms, full-listing is 

impossible in an agglutinating language like Turkish. Storing a few hundred forms is 

clearly within the capacity of the human brain, and these few hundred forms can 

efficiently deal with the majority of the word-forms people encounter in their daily 

lives. 

These findings are also in line with “usage-based” accounts of grammar, 

which claim that linguistic structure emerges from language use, i.e. from repeated 

exposure to certain constructions over time (Bybee, 2011, p. 69).  

 

 

                                                           
41 An analysis of word-forms instead of suffix templates provides an even more striking picture: The 

BOUN corpus contains 1,236,526 unique word-forms. When compared to the 200 billion forms 

proposed by Hankamer (1989), it can be concluded that 99.999996% of possible word-forms are never 

used in a corpus of almost 300 million words. 
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5.1.5  Morphology dominates even sub-lexical distributions 

According to Appendix D, the most frequent 15 middle-position letter-trigrams of 

Turkish are the following: lar, ler, eri, arı, bir, ara, nda, ile, ası, lan, ini, ını, rin, yor,  

ınd. In other words, these are the most frequent letter combinations to occur in the 

middle of word-forms. 

 Except for the letter sequences b-i-r and i-l-e, which are identical to the 

function-words bir ‘one, a’ and ile ‘with’, all letter-triples on this list look like the 

inflectional and derivational suffixes of Turkish: l-e-r and l-a-r correspond to the two 

variants of the plural marker +A3pl; e-r-i and a-r-ı are identical to the last three 

letters of the frequent suffix sequence +A3pl+Acc or +A3pl+P3sg; y-o-r corresponds 

to the only variant of the present-tense marker +Prog1, etc. This means that the 

morphology of the language has a deep impact even at a sub-lexical level such as the 

distribution of letter-triples. 

 

5.1.6  Online experiments are feasible 

This study has also demonstrated the feasibility of online psycholinguistic 

experiments. To the best of our knowledge, the two experiments described in 

Chapter 4 are the most widely-participated psycholinguistic experiments on Turkish 

so far. 

The main benefit of an online experiment is that it can collect large amounts 

of data in a short time. In fact, the two experiments reported here have collected 

hundreds of thousands of RT measurements from more than 2,500 people within a 

couple of weeks. The availability of such a large sample also allows the experimenter 

to design complex experiments that consist of several versions, each probing another 

aspect of the experimental task, and to use more than one stimulus set, each 
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constituting a replication of the others, thus improving the validity and reliability of 

the results.   

 

5.1.7  Letter shape plays no role in lexical decision 

Both experiments in this study had a factorial design in that one of the versions used 

lowercase stimuli while the other used the uppercase versions of the same stimuli. 

The purpose of this design was to test if the visual shapes of letters played a role in 

lexical decision. 

Although a formal statistical analysis of this parameter has not been included 

in this study, an informal examination shows that the uppercase and lowercase 

versions have similar results in terms of response times and recognition accuracies. 

The recognition accuracies of individual stimuli, in particular, support an interesting 

finding: As mentioned in Section 4.3.1 and Section 4.4.4.1, the lowest-performing 

items of both experiments consist of the uppercase and lowercase versions of the 

very same stimuli. In other words, subjects had a very low accuracy in recognizing 

these stimuli, regardless of their physical shape. This coordinated behavior suggests 

that this low performance was caused by the inherent, abstract properties of the 

stimuli, rather than the physical shapes of the letters that make them up. 

Although we are usually unaware, there exists almost no visual similarities 

between several lowercase and uppercase letters of the Latin alphabet (e.g. a-A, b-B, 

d-D, e-E, g-G, l-L, r-R). According to Dehaene (2009), the very early stages of visual 

word recognition involve purely visual pattern recognition, where the exact physical 

shape of the letters does matter. However, “the discrepancy between uppercase and 

lowercase letters. . . ceases to matter at an early stage in the visual stream” (Dehaene, 

2009). 
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The accuracy data obtained from the two experiments supports Dehaene’s 

hypothesis, suggesting that letter shape does not have a visible effect on accuracy 

rates in a lexical decision task, which measures the end result of a process that goes 

well beyond the very early stages of visual processing.   

 

5.1.8  Decomposition route is slow 

Table 34 shows the global average response times and accuracies of all stimuli in the 

HIGH and LOW conditions of Experiment 1 (simple nouns) and Experiment 2 

(novel complex nouns). 

 

Table 34.  Global Average RTs and Accuracies in Exp. 1 and Exp. 2 

 Mean RT Mean accuracy 

Simple (Exp. 1) 647 97.2% 

Complex (Exp. 2) 1290 97.2% 

 

 As can be seen in Table 34, there is a two-fold difference between the mean 

RTs of simple nouns and novel complex nouns. Mean accuracies, on the other hand, 

are identical. 

 In Experiment 1, we can be sure that the subjects used the full-listing route 

exclusively, because there is nothing to be decomposed there. In Experiment 2, on 

the other hand, we can be sure that the subjects used some form of the decomposition 

route, because all stimuli are novel root+suffix combinations never encountered 

before, and have to be parsed into at least two parts (root + suffixes), even if the 

entire suffix sequence has a single full-listed entry of its own. 

 In other words, the two-fold difference between the mean RT in Experiment 1 

(647 ms) and the mean RT in Experiment 2 (1,290 ms) gives us a rough idea about 
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the relative speeds of the full-listing and decomposition routes: The suffix sequence 

at the end of the word seems to be adding an immense workload to the processing of 

the simple root. Obviously, this is just an informal, preliminary observation, and 

several additional experiments specifically addressing this issue are needed. 

 

5.2  Main findings 

This section reports those findings that are strictly related to the three research 

questions and hypotheses defined at the beginning. 

 

5.2.1  Frequency effect in bare nouns 

Experiment 1 provides clear statistical evidence that more frequent simple words are 

processed faster than less frequent simple words. Although this is an important and 

basic finding, there is not much to say about it, since the existence of this effect has 

already been demonstrated innumerable times in the literature, for many 

typologically unrelated languages. 

 The importance of this finding lies more in the fact that it has been obtained 

in the first large-scale online psycholinguistic experiment on Turkish. The clear 

statistical results, which have been replicated by all eight versions of Experiment 1, 

suggest that the methodology developed in this study has produced valid and reliable 

results. 

 

5.2.2  Left-to-right processing 

Results from the PR and RP conditions of Experiment 2 provide some evidence that 

complex words are parsed from left to right, as suggested by Hankamer (1989). 

Non-words that contain a pseudo root and real suffixes such as 

gansien+lerinizin (the PR condition) were rejected significantly faster than non-
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words that contain a real root and pseudo suffixes such as bıldırcın+ganıluf (the RP 

condition).42 Critically, this happened despite the fact that the more rapidly processed 

PR stimuli are more complex than the more slowly processed RP stimuli 

(gansien+lerinizin contains four “morphemes”, while bıldırcın+ganıluf contains 

only two). 

The finding that complex Turkish words are processed from left to right 

would have an important implication: If the root is recognized before the suffixes, 

this means that the orthographic, phonological, syntactic, paradigmatic and semantic 

representations of the root can be activated before the suffixes have been recognized. 

If there are mechanisms in the human brain that are fast enough to communicate this 

multi-level information to the “morphological parser/disambiguator” before it has 

begun processing the suffixes, this means that the parser has a significant advantage 

at the outset. 

For example, consider the ambiguous string kalemim ‘my pen / I’m a pen’. If 

the parser already has the semantic information that the root refers to an inanimate 

object that can be owned by persons, it might use this information to disambiguate 

the -im suffix more efficiently, and decide that the correct parse is kalem+P1sg, 

rather than kalem+Pres+A1sg. 

A similar mechanism could be at work at the orthographic/phonological level: 

If the parser already has the information that the last vowel of the root is an /e/, it 

might recognize the suffix -im more efficiently, since the combination /e/+/i/ obeys 

the rules of vowel harmony. 

                                                           
42 In the four versions that used names of tools as roots, the difference between the RP and PR 

conditions was not statistically significant, but the RT difference was in the expected direction (PR < 

RP) also in those versions. 
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To summarize, the fact that the root has already been recognized as the parser 

begins to process the suffixes would have important implications at the 

morphological, semantic, phonological and orthographic levels. Of course, these are 

informal suggestions without an empirical basis. 

 

5.2.3  Mental representation of suffix sequences 

Results from the HIGH and LOW conditions of Experiment 2 provide clear 

statistical evidence that the processing speed of a suffix sequence is sensitive to the 

frequency of that suffix sequence, everything else being equal. This evidence 

supports the hypothesis that the human brain can use suffix sequences like 

P1pl+Gen+Rel (i.e. -(I)mIzInki, as in the word-form çocuğumuzunki ‘the one that 

belongs to our child’) as effective processing units in the recognition of complex 

words. 

As discussed in Section 2.1, existing literature on morphological processing is 

centered around the “full-listing vs. decomposition” dichotomy. But in all existing 

models, the thing that is being fully-listed is either an entire root/stem (as in çocuk 

‘child’, çocukluk ‘childhood’ or çocuksuluk ‘childishness’), or an entire complex 

word-form (as in çocuğumuzunki ‘the one that belongs to our child’). None of the 

visual word recognition models in the language processing literature allow for an 

undecomposed mental entry for a suffix sequence like P1pl+Gen+Rel. However, this 

is exactly what the results of Experiment 2 suggest. 

Let us repeat the suggestion in Frauenfelder & Schreuder (1992): 

. . . it is possible that combinations of roots and affixes that a listener 

encounters frequently could get a separate access representation. 

Consequently, a single word form might be recognized through the 

cooperative efforts of the direct [i.e. full-listing] route and the parser [i.e. the 

decomposition route]. The frequently co-occurring roots plus affixes 

[emphasis added] would be recognized by the direct route, and the rest of the 
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word [emphasis added] by the parser that combines the results of the direct 

route with the remaining morphemes [emphasis added] to be parsed. 

(Frauenfelder & Schreuder, 1992, p. 180) 

 

Note that Frauenfelder & Schreuder (1992) are not repeating the predictions 

of a standard “race” version of the dual-route model here. More specifically, they are 

not simply claiming that the word-form tamamlananlar ‘the ones that have been 

completed’, for example, is represented both as an unanalyzed chunk 

(tamamlananlar) and also in fully-decomposed form (tamam+la+n+an+lar), where 

the two representations engage in a “race” in which the faster route prevails. Rather, 

their claim predicts that the initial, four-morpheme part of the word (tamamlanan 

‘the one that has been completed’) is listed as an unanalyzed chunk because it is a 

frequently used complex-form, and is thus accessed through the direct route, while 

“the rest of the word” (i.e. “the remaining morphemes”, which in this case only 

consists of the plural marker -lAr) is analyzed by the parser, and finally, the full-

listed complex-form tamamlanan and the morpheme -lar are combined, to arrive at 

the complex form tamamlananlar. In other words, the root and the first three suffixes 

are accessed by the direct route in a single step, while the last suffix is accessed in 

decomposed form. 

This hypothesis is supported by three empirical findings of this study: (a) 

frequent suffix sequences may have their own undecomposed mental representation, 

(b) 99.9975% of possible suffix sequences are not used even once in a 283-million-

word corpus, and (c) those sequences that are used have an extremely uneven 

distribution, where the most frequent few hundred sequences account for the 

majority of the word-forms encountered. 

Let us demonstrate the resulting picture with a concrete example: The suffix 

template +P3sg+Loc+Rel occurs 982,105 times in the BOUN Corpus (3,470 per 
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million), making it the 23rd most frequent suffix-template of Turkish. Being highly 

frequent, this suffix-template is a good candidate for having an undecomposed 

mental representation of its own. Secondly, the bare noun haşema refers to a type of 

swimsuit worn by conservative Muslim women, and is a rarely used root that occurs 

only 98 times in the BOUN Corpus. Finally, the combination haşemasındaki ‘the one 

in her swimsuit’ is a grammatical word-form, but does not occur in the BOUN 

Corpus.43 

When encountered with the zero-frequency complex-form haşemasındaki, the 

full-listing route is of no help, since this combination has never been encountered 

before and cannot have an undecomposed entry of its own. Thus, the decomposition 

route analyzes the word into two parts, haşema- and -sındaki (rather than 

decomposing it into the four parts haşema-, -sı, -da, and -ki, as proposed in existing 

models). The mental representations of the root haşema and the suffix template 

+P3sg+Loc+Rel presumably both contain orthographic, phonological, syntactic, 

paradigmatic and semantic information. In the final synthesis step, the information 

coming from the root is combined with the information coming from the suffix 

template, and the word as a whole is recognized. 

Let us go one step further, and apply the suggestion in Frauenfelder & 

Schreuder (1992) to an even more complex form: The complex-form 

haşemasındakilerin ‘of those in her swimsuit’ contains the suffix-template 

+P3sg+Loc+Rel+A3pl+Gen, which occurs only 2,683 times (9 per million) in the 

BOUN Corpus. Not being among the most frequent few hundred suffix-templates, 

+P3sg+Loc+Rel+A3pl+Gen probably does not have a separate mental 

representation of its own. The combination of the last two suffixes, on the other hand 

                                                           
43 As of the date of writing, haşemasındaki also did not produce any results on the Google search 

engine, which is presumably larger than the BOUN Corpus by several orders of magnitude.  
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(A3pl+Gen) occurs 2,342,113 times in the BOUN Corpus (8,276 per million), 

making it the 13th most frequent suffix-template of Turkish. Being highly frequent, 

A3pl+Gen is another good candidate for having an undecomposed mental 

representation of its own. 

As before, when encountered with the zero-frequency complex-form 

haşemasındakilerin, the full-listing route is of no help. Thus, the decomposition route 

analyzes the word into three parts, haşema-, -sındaki, and -lerin. The information 

coming from the root is combined with the information coming from the two suffix 

templates +P3sg+Loc+Rel and +A3pl+Gen, and the word as a whole is 

recognized.44 

  

                                                           
44 Moreover, if the left-to-right parsing hypothesis is correct, and if there exist sufficiently fast  

communication mechanisms between the brain regions that process the root and the suffixes, the 

parser already “knows” that the root refers to a type swimsuit and that its last vowel is /a/, thus 

starting the suffix-recognition process, and the final semantic synthesis with a significant advantage. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

The quantitative work on corpus data and the results of the two experiments seem to 

have provided an interesting picture, which in some cases supports well-established 

findings in the literature, and in some other cases represents a departure from 

existing models of language processing. 

 First of all, the importance of frequency in the mental representation and 

processing of language has been reaffirmed. The results also support the well-known 

phenomena that frequency distributions are extremely uneven, that different 

frequency measures are highly correlated, and that linguistic data is characterized by 

sparsity. 

The suggestion that suffix sequences might have their own mental 

representation, on the other hand, is a slight but important departure from existing 

models of visual word recognition. In fact, this is a refinement of existing models 

based on decomposition, in that it allows for the representation of suffix sequences, 

in addition to the representation of individual suffixes. In other words, the only 

change is that the “unit of decomposition” is a chunk of several suffixes instead of a 

single suffix, while the analysis and synthesis mechanisms remain the same. 

Finally, Sections 6.1 to 6.4 present some ideas for future work in the field. 

 

6.1  Continue quantification 

The quantification and modelling effort in Chapter 3 seems to have paid off. 

General-purpose linguistic datasets such as the frequency distributions of letters, 

suffixes, suffix templates and their ngrams have been produced and reported. These 
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datasets seem to have significantly contributed to the clear statistical results obtained 

from the experiments. 

 As mentioned in Section 2.2.1, the properties of words can be quantified at a 

surprisingly large number of levels. Several metrics are waiting to be defined and 

measured, including the following: letter features, uniqueness point, number of 

phonemes, number of syllables, polarity, emotional content, imageability, family 

size, family frequency, age of acquisition, number of synonyms, number of senses, 

collocates, visual recognition times, visual recognition accuracies. 

 

6.2  Publish datasets 

In the spirit of the “copy-left” movement, all linguistic datasets as well as the raw 

data of the experiments should be made publicly (and electronically) available 

without any copyright restrictions. This will prevent researchers from reinventing the 

wheel every time they form a testable hypothesis or design an experiment, and will 

allow more in-depth analysis of existing experimental results and facilitate the design 

of replication studies. 

 

6.3 Analyze existing data 

Large amounts of data, including the demographic data of subjects, have been 

collected in the two experiments. Although the statistical analysis of the 

demographic data has not been included here, several interesting questions can be 

asked: 

How do age, gender, handedness and education level affect visual word 

recognition? The data on handedness is especially interesting because the 

experiments had a factorial design where the choice of keys intentionally forced half 
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of the subjects to press the ‘yes’ button with their left hand, and the other half with 

their right hand. Moreover, handedness data is available for each subject. In other 

words, we know if a subject used his/her dominant hand or non-dominant hand in 

any given response. Anecdotal evidence from the pilot studies indicates that the 

subjects prefer to press the ‘yes’ button with their dominant hand. How does this 

parameter affect response times and recognition accuracies? 

Another analysis that is possible with existing data concerns the training and 

fatigue effects described in Section 4.2.6. How does the order of presentation of the 

stimuli affect the subjects’ performance? When does the training effect come to an 

end? When does the fatigue effect kick in? These analyses would have important 

implications for future experiment design. 

Finally, existing experimental data allows us to examine the relationships 

between the following pairs of variables: word length vs. RT and error rate, number 

of syllables vs. RT and error rate, bigram frequency vs. RT and error rate, 

neighborhood size and neighborhood frequency vs. RT and error rate (see 

McGinnies, Comer, & Lacey, 1952, p .67; Schiepers, 1980, p. 75), the correlation 

between RT and error rate (see Taft, 1979). 

 

6.4  Additional experiments 

The JavaScript-based online platform can be used to quickly implement any type of 

lexical decision experiment at almost zero cost. The following factorial design, for 

example, would answer several questions in a single experiment: 

Design a 4 x 4 factorial lexical decision experiment for complex-forms where 

the root is either a high-frequency real word, a low-frequency real word, a 

phonotactically plausible non-word, or a phonotactically implausible non-word, 
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while the suffix-template is either a high-frequency template, a low-frequency 

template, a zero-frequency template (i.e. grammatical but unattested), or an 

ungrammatical template (e.g. an impossible suffix sequence). 
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APPENDIX A 

SUFFIXES OF TURKISH 

 

# Tag Description Suffix Type* Vowel Type** Surface Forms 

00 A1pl 1st person plural Infl. I -(y)Iz 

01 A1sg 1st person singular Infl. I -(y)Im 

02 A2pl 2nd person plural Infl. I -(y)InIz 

03 A2sg 2nd person singular Infl. I -(y)In 

04 A3pl 3rd person plural Infl. A -lAr 

05 A3sg 3rd person singular Infl. I Ø 

06 Abbr Abbreviation - - Ø 

07 Able Abilitative Infl. A -Abil 

08 Abl Ablative Infl. A -Dan 

09 Acc Accusative Infl. I -(y)I 

10 Acquire  Drv. A -lAn 

11 Acro Acronym - - Ø 

12 Adj Adjective POS - Ø 

13 Adv Adverb POS - Ø 

14 AfterDoingSo -(y)Ip Gerund Infl. I -(y)Ip 

15 Agt Agentive Drv. I -CI 

16 Aor Aorist Infl. Irr. -Ar, -Ir 

17 Apos Apostrophe - - Ø 

18 AsIf  Drv. I -CasınA 

19 AsLongAs  Infl. I -DıkçA 

20 Become  Drv. A -lAş 

21 ByDoing So -(y)ArAk Gerund Infl. A -(y)ArAk 

22 Caus Causative Drv. I -Dır 

23 Cond Conditional Infl. A -sA 

24 Cop Copula Infl. I -DI 

25 Dat Dative Infl. A -(y)A 

26 Desr  Infl. A -sA, 

27 Dim Diminutive Drv. I -Cık 

28 Equ Equative Infl. A -CA 

29 EverSince  Infl. A -(y)Agel 

30 FeelLike  Infl. A -(y)AsI 

31 FitFor  Drv. I -lIk 



141 
 

# Tag Description Suffix Type* Vowel Type** Surface Forms 

32 Fut Future Tense Infl. A -(y)AcAk 

33 FutPart  Infl. A -(y)AcAğI 

34 Gen Genitive Infl. I -(n)In 

35 Hastily  Infl. I -(y)Iver 

37 Imp Imperative Infl. - Ø 

38 Inf1 Nominalizer 1 Infl. A -mAk 

39 Inf2 Nominalizer 2 Infl. A -mA 

36 Inf3 Nominalizer 3 Infl. I -(y)Iş 

40 Ins  Infl. A -(y)lA 

41 Loc Locative Infl. A -DA 

42 Narr Narrative Infl. I -mIş 

43 NarrNess  Drv. I -mIşlIk 

44 Neces  Infl. A -mAlI 

45 Neg Negative Infl. A -mA 

46 Ness  Drv. I -lIk 

47 NoHats  - - Ø 

48 Nom Nominative Infl. - Ø 

49 NotState  Drv. A -mAzlIk 

50 Noun Noun POS - Ø 

51 Opt Optative Infl. A -AlIm 

52 P1pl 1st  person pl. possessive Infl. I -(I)mIz 

53 P1sg 1st person sing. possessive Infl. I -(I)m 

54 P2pl 2nd person pl. possessive Infl. I -(I)mIz 

55 P2sg 2nd person sing. possessive Infl. I -(I)n 

56 P3pl 3rd person pl. possessive Infl. A -lArI 

57 P3sg 3rd person sing. possessive Infl. I -(s)I 

59 Pass Passive Drv. I -Il 

58 Past Past Tense Infl. I -DI 

60 PastPart Nominalizer Infl. I -DIğI 

61 Pnon No Possessive Marker Infl. - Ø 

62 Pos Positive Infl. - Ø 

63 Pres Relative-Clause Marker Infl. A -(y)An 

64 PresPart  Infl. A -(y)An 

65 Prog1 Progressive Infl. I -Iyor 

66 Prog2 Progressive Infl. A -mAktA 

67 Pron Pronoun POS - Ø 
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# Tag Description Suffix Type* Vowel Type** Surface Forms 

68 Prop Proper Name POS - Ø 

69 Rel Relativizer Infl. Inv. -ki, 

70 Repeat  Infl. A -Adur 

71 Since  Infl. A -(y)AlI 

72 SinceDoingSo  Infl. A -(y)AlI 

73 Verb Verb POS - Ø 

74 When  Infl. I -(y)IncA 

75 While  Infl. Inv. -(y)ken, 

76 With Instrumental/Comitative Drv. I -lI 

77 Without Abessive/Privative Drv. I -sIz 

78 WBATHDS45  Infl. A -(y)AmAdAn 

79 WHDS46  Infl. A -mAksIzIn 

* Infl. = inflectional, Drv. = derivational, POS = main part of speech 

** I = I-type vowel, A = A-type vowel, Inv. = invariant, Irr. = irregular  

  

                                                           
45 WBATHDS: WithoutBeingAbleToHaveDoneSo 
46 WHDS: WithoutHavingDoneSo 
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APPENDIX B 

MOST FREQUENT LETTERS OF TURKISH 

ACCORDING TO BOUN CORPUS 

 

WORD-INITIAL WORD-FINAL ANYWHERE 

Letter Frequency Letter Frequency Letter Frequency 

b 44,090,273 n 51,290,297 a 260,112,729 

k 30,734,003 e 44,283,345 e 187,851,722 

d 29,722,725 a 40,295,016 i 181,751,723 

a 28,505,182 i 36,811,773 n 156,278,766 

y 25,878,252 r 34,392,772 r 146,219,968 

i 23,071,464 ı 28,379,563 l 146,131,138 

o 17,752,022 k 22,863,560 ı 105,261,356 

g 16,740,931 u 14,362,462 k 99,454,330 

v 15,014,283 m 10,511,513 d 93,472,768 

h 13,488,226 l 8,132,453 y 71,975,642 

s 13,341,906 z 8,003,251 m 67,682,549 

e 7,354,131 t 6,503,245 u 67,104,224 

ö 7,194,989 ş 4,487,439 t 62,472,970 

p 6,612,897 ü 3,385,040 s 58,926,177 

ç 6,205,912 p 2,541,234 b 56,353,705 

f 5,660,025 ç 1,968,650 o 53,107,713 

ş 4,998,813 y 1,826,598 ü 37,400,349 

ü 4,699,078 s 1,819,216 ş 35,287,648 

m 4,006,470 o 1,478,418 z 31,211,288 

u 3,874,624 f 952,823 g 25,384,097 

r 3,649,792 d 604,248 v 23,825,184 

t 3,264,524 h 594,838 ğ 22,579,397 

c 3,151,614 b 353,756 h 21,452,381 

z 2,780,477 v 342,677 c 20,918,799 

l 2,029,066 g 251,404 ç 20,702,437 

n 1,867,444 ğ 144,846 p 18,681,422 
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ı 806,469 j 111,616 ö 17,830,438 

j 335,857 c 91,021 f 11,173,306 

ğ 0 w 43,562 j 1,491,305 

q 0 ö 3,670 w 86,649 

w 0 q 1,143 q 9,619 

x 0 x 0 x 0 

Σ 326,831,449 Σ 326,831,449 Σ 2,102,191,799 
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APPENDIX C 

MOST FREQUENT LETTER BIGRAMS OF TURKISH 

ACCORDING TO BOUN CORPUS 

 

Note that ‘#’ marks the beginning of a word, and ‘|’ marks the end. For example, the 

bigram #b refers to the letter b occurring at the beginning of a word, while the 

bigram n| refers to the letter n occurring at the end of a word. 

MIDDLE INITIAL FINAL 

bigram frequency bigram frequency bigram frequency 

ar 40,968,010 #b 44,090,273 n| 51,286,906 

la 39,915,859 #k 30,734,003 e| 44,283,345 

an 37,557,802 #d 29,722,725 a| 40,294,977 

er 33,383,695 #a 28,505,182 i| 36,810,927 

in 31,224,527 #y 25,878,252 r| 34,223,197 

le 31,191,572 #i 23,071,464 ı| 28,379,563 

de 27,034,519 #o 17,752,022 k| 22,810,860 

ın 25,790,373 #g 16,740,931 u| 14,362,440 

da 24,380,520 #v 15,014,283 m| 10,509,129 

en 24,095,506 #h 13,488,226 l| 8,130,942 

ya 23,109,256 #s 13,341,906 z| 7,986,238 

ir 21,892,623 #e 7,354,131 t| 6,495,846 

il 21,135,179 #ö 7,194,989 ş| 4,460,013 

ka 21,132,649 #p 6,612,897 ü| 3,385,040 

ma 19,913,850 #ç 6,205,912 p| 2,540,547 

nd 19,077,058 #f 5,660,025 ç| 1,942,684 

bi 18,927,254 #ş 4,998,813 y| 1,819,238 

ra 18,709,191 #ü 4,699,078 s| 1,789,257 

al 18,203,574 #m 4,006,470 o| 1,478,418 

ak 17,828,963 #u 3,874,624 f| 839,960 
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APPENDIX D 

MOST FREQUENT LETTER TRIGRAMS OF TURKISH 

ACCORDING TO BOUN CORPUS 

 

Note that ‘#’ marks the beginning of a word, and ‘|’ marks the end. For example, the 

trigram  #bi refers to the letter bigram bi occurring at the beginning of a word, while 

the trigram an| refers to the letter bigram an occurring at the end of a word. 

MIDDLE INITIAL FINAL 

trigram frequency trigram frequency trigram frequency 

lar 17,840,775 #bi 14,923,284 an| 14,090,177 

ler 13,563,353 #ya 12,925,211 da| 12,573,360 

eri 12,504,179 #ka 12,816,174 in| 11,564,726 

arı 11,298,223 #ve 12,020,801 ir| 11,556,602 

bir 10,971,873 #de 10,416,458 en| 10,786,749 

ara 9,241,543 #ol 10,320,346 de| 10,705,252 

nda 8,758,887 #bu 9,265,853 ve| 9,040,772 

ile 7,535,094 #ba 9,259,101 ın| 8,551,320 

ası 7,134,179 #ha 7,245,574 ar| 7,928,454 

lan 7,032,130 #ge 6,576,875 ak| 7,214,981 

ini 6,819,644 #da 6,303,411 er| 6,793,134 

ını 6,752,163 #be 5,427,026 le| 6,209,786 

rin 6,341,343 #il 5,086,397 nı| 5,697,230 

yor 6,244,097 #ko 5,034,178 ni| 5,161,005 

ınd 6,222,435 #al 4,751,984 bu| 5,129,891 

nde 5,742,409 #ar 4,247,296 ri| 4,538,774 

anı 5,733,537 #ye 3,953,526 ne| 4,474,776 

ama 5,686,917 #iç 3,934,643 na| 4,399,122 

rın 5,521,342 #is 3,868,457 ki| 4,387,558 

ola 5,513,024 #ku 3,760,266 ek| 4,267,612 
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APPENDIX E 

MOST FREQUENT SUFFIXES OF TURKISH 

ACCORDING TO BOUN CORPUS 

 

TEMPLATE-INITIAL TEMPLATE-FINAL ANYWHERE 

Morpheme Frequency Morpheme Frequency Morpheme Frequency 

P3sg 37,531,526 P3sg 29,565,419 P3sg 61,851,909 

A3pl 22,780,373 Loc 17,614,011 A3pl 27,504,964 

Pass 10,402,113 Dat 16,554,996 Loc 20,157,607 

Loc 8,522,658 Gen 16,499,069 Dat 16,571,996 

Gen 7,358,236 Acc 11,896,321 Gen 16,540,615 

Inf2 7,280,436 Postp 10,729,668 Pass 12,129,429 

Dat 6,908,506 PresPart 8,846,461 Acc 11,896,571 

PastPart 6,746,480 Past 8,727,693 Inf2 11,044,901 

Past 6,423,379 A3pl 7,497,970 Past 10,411,050 

PresPart 6,113,048 Abl 6,428,026 PresPart 9,613,180 

Caus 4,766,224 Ins 4,423,279 PastPart 8,891,756 

With 4,590,190 With 4,363,149 Abl 6,456,381 

Prog1 4,142,779 Prog1 3,577,605 Prog1 5,970,774 

Neg 3,139,148 Cop 3,290,851 Caus 5,723,564 

Aor 2,750,310 A1sg 3,186,572 Aor 5,184,027 

BDS 2,490,351 BDS 2,988,599 Neg 4,904,699 

Abl 2,467,746 Aor 2,651,071 With 4,873,814 

Ness 2,230,889 Inf2 2,633,883 Ins 4,426,759 

Inf1 2,218,927 Rel 2,527,737 A1sg 4,001,305 

Able 2,084,949 Inf1 2,469,923 Cop 3,333,858 

Fut 1,877,973 Fut 2,274,837 Fut 3,249,452 

Narr 1,825,715 A1pl 1,944,972 Narr 3,232,754 

Acc 1,702,255 Narr 1,942,025 BDS 2,988,842 

Ins 1,677,114 Cond 1,562,579 Able 2,858,709 

Pres 1,607,567 A2pl 1,318,598 Inf1 2,827,749 

A1sg 1,370,696 P1pl 1,012,695 Rel 2,602,953 
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Agt 1,350,042 Ness 1,006,754 A1pl 2,591,640 

P1pl 1,093,301 ADS 973,602 Pres 2,541,703 

Inf3 1,073,004 P1sg 969,591 Ness 2,401,229 

P1sg 1,064,183 A2sg 839,391 P1pl 2,168,476 

Cond 1,051,620 While 834,525 Cond 1,866,292 

A1pl 981,085 P3pl 652,394 P1sg 1,811,347 

Imp 979,586 Agt 635,911 FutPart 1,613,010 

FutPart 835,203 Without 499,614 A2pl 1,564,829 

Become 818,196 PastPart 488,299 Agt 1,403,042 

ADS 781,396 Inf3 460,785 Imp 1,311,749 

Acquire 772,957 P2pl 454,622 Inf3 1,156,009 

Without 566,544 Imp 407,537 P2pl 1,045,165 

P2pl 469,500 Desr 320,397 P3pl 978,504 

Prog2 417,019 Equ 311,570 A2sg 974,714 

Desr 390,183 When 276,326 ADS 973,615 

Rel 343,244 Pres 268,923 While 834,532 

Opt 313,180 Prog2 214,074 Become 834,523 

A2pl 310,003 P2sg 126,734 Acquire 773,523 

P2sg 262,838 AsIf 111,338 Prog2 681,233 

A2sg 223,245 AsLongAs 71,268 Without 570,933 

When 223,117 Opt 60,657 Desr 547,534 

Neces 132,626 WHDS 31,312 Opt 378,377 

AsIf 91,414 Dim 9,066 Equ 311,570 

P3pl 52,635 SDS 7,083 P2sg 299,716 

AsLongAs 47,675 WBATHDS 6,558 When 297,415 

While 44,677 FeelLike 3,706 Neces 237,551 

Equ 42,624 NarrNess 3,249 AsIf 111,338 

WHDS 21,977 NotState 1,581 AsLongAs 71,269 

Dim 21,070 Since 1,254 WHDS 31,312 

Hastily 17,017 FitFor 963 Dim 21,207 

Recip 7,910   Hastily 20,234 

NotState 7,069   Narrness 10,495 

WBATHDS 5,545   NotState 9,014 
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SDS 5,434   Recip 7,910 

NarrNess 5,138   SDS 7,096 

FeelLike 4,772   FeelLike 7,001 

EverSince 4,282   WBATHDS 6,558 

Stay 2,405   EverSince 6,323 

FitFor 1,666   Stay 2,407 

Since 1,254   FitFor 1,666 

Repeat 830   Since 1,254 

Start 286   Repeat 966 

Almost 85   Start 286 

    Almost 92 

Σ 176,419,110 Σ 186,577,093 Σ 450,671,965 
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APPENDIX F 

MOST FREQUENT SUFFIX BIGRAMS OF TURKISH 

ACCORDING TO BOUN CORPUS 

 

Note that ‘#’ marks the beginning of a suffix template, and ‘|’ marks the end. For 

example, #+P3sg refers to the suffix P3sg occurring immediately after the root, 

while Loc+| refers to the suffix Loc occurring at the very end. 

MIDDLE INITIAL FINAL 

bigram frequency bigram frequency bigram frequency 

A3pl+P3sg 11,125,524 #+P3sg 37,531,526 P3sg+| 29,565,419 

P3sg+Loc 9,181,147 #+A3pl 22,780,373 Loc+| 17,614,011 

P3sg+Acc 8,319,809 #+Pass 10,402,113 Dat+| 16,554,996 

PastPart+P3sg 6,272,174 #+Loc 8,522,658 Gen+| 16,499,069 

P3sg+Dat 5,823,687 #+Gen 7,358,236 Acc+| 11,896,321 

P3sg+Gen 4,516,591 #+Inf2 7,280,436 PresPart+| 8,846,461 

Inf2+P3sg 4,336,171 #+Dat 6,908,506 Past+| 8,727,693 

A3pl+Gen 2,975,743 #+PastPart 6,746,480 A3pl+| 7,497,970 

Pass+PresPart 2,423,869 #+Past 6,423,379 Abl+| 6,428,026 

P3sg+Abl 2,306,425 #+PresPart 6,113,048 Ins+| 4,423,279 

Loc+Rel 2,241,198 #+Caus 4,766,224 With+| 4,363,149 

Pass+Inf2 2,162,245 #+With 4,590,190 Prog1+| 3,577,605 

Pres+Cop 1,832,847 #+Prog1 4,142,779 Cop+| 3,290,851 

P3sg+Ins 1,660,370 #+Neg 3,139,148 A1sg+| 3,186,572 

Caus+Pass 1,606,985 #+Aor 2,750,310 ByDoingSo+| 2,988,599 

A3pl+Dat 1,541,957 #+ByDoingSo 2,490,351 Aor+| 2,651,071 

A3pl+Loc 1,366,901 #+Abl 2,467,746 Inf2+| 2,633,883 

Pass+Past 1,288,424 #+Ness 2,230,889 Rel+| 2,527,737  

FutPart+P3sg 1,265,524 #+Inf1 2,218,927 Inf1+| 2,469,923 

Inf2+A3pl 1,086,718 #+Able 2,084,949 Fut+| 2,274,837 
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APPENDIX G 

MOST FREQUENT SUFFIX TRIGRAMS OF TURKISH 

ACCORDING TO BOUN CORPUS 

 

Note that ‘#’ marks the beginning of a suffix template, and ‘|’ marks the end. For 

example, #+A3pl+P3sg refers to the bigram A3pl+P3sg occurring immediately after 

the root, while P3sg+Acc+|refers to the bigram P3sg+Acc occurring at the very end. 

MIDDLE INITIAL FINAL 

trigram frequency trigram frequency trigram frequency 

PastPart+P3sg+Acc 2,165,802 #+A3pl+P3sg 9,544,305 P3sg+Acc+| 8,319,604 

A3pl+P3sg+Acc 1,805,035 #+P3sg+Loc 7,799,760 P3sg+Loc+| 7,850,643 

Pass+Inf2+P3sg 1,727,563 #+PastPart+P3sg 4,583,666 P3sg+Dat+| 5,819,860 

A3pl+P3sg+Gen 1,315,406 #+P3sg+Dat 3,912,347 A3pl+P3sg+| 5,153,399 

P3sg+Loc+Rel 1,137,732 #+P3sg+Acc 3,079,146 P3sg+Gen+| 4,513,539 

A3pl+P3sg+Dat 1,010,340 #+P3sg+Gen 2,704,439 PastPart+P3sg+| 3,499,092 

A3pl+P3sg+Loc 913,214 #+A3pl+Gen 2,578,768 A3pl+Gen+| 2,972,157 

Pass+PastPart+P3sg 789,047 #+Pass+PresPart 2,130,266 Inf2+P3sg+| 2,556,278 

Neg+PastPart+P3sg 605,338 #+Inf2+P3sg 2,092,255 Pass+PresPart+| 2,320,360 

Inf2+A3pl+P3sg 603,229 #+Pass+Inf2 1,729,727 P3sg+Abl+| 2,298,768 

FutPart+P3sg+Acc 561,148 #+P3sg+Abl 1,505,106 Loc+Rel+| 2,196,511 

Inf2+P3sg+Acc 539,945 #+A3pl+Dat 1,332,418 Pres+Cop+| 1,812,872 

A3pl+P3sg+Abl 538,501 #+A3pl+Loc 1,284,056 P3sg+Ins+| 1,659,845 

Inf2+P3sg+Dat 478,531 #+Caus+Pass 1,270,248 A3pl+Dat+| 1,541,736 

PastPart+A3pl+P3sg 453,444 #+P3sg+Ins 1,155,107 A3pl+Loc+| 1,247,082 

Caus+Pass+Inf2 425,156 #+Pres+Cop 1,115,565 Pass+Past+| 1,242,546 

A3pl+P3sg+Ins 332,299 #+Pass+Past 1,032,413 Inf2+Dat+| 992,226 

Inf2+P3sg+Gen 284,802 #+Inf2+A3pl 901,621 Past+A1sg+| 981,006 

Able+Neg+Aor 277,174 #+Loc+Rel 822,412 Prog1+A1sg+| 838,053 

P3sg+Pres+Cop 266,564 #+Pass+PastPart 784,309 Aor+While+| 733,472 
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APPENDIX H 

MOST FREQUENT 200 NOMINAL SUFFIX TEMPLATES 

OF TURKISH ACCORDING TO BOUN CORPUS 

 

Rank Suffix template Frequency  Rank Suffix template Frequency 

1. Noun 67,395,919  61. Noun+Acquire+Caus+Inf2 62,999 

2. Noun+P3sg 15,846,993  62. Noun+Agt+P3sg 59,754 

3. Noun+Loc 6,719,144  63. Noun+A3pl+P1pl+Gen 56,522 

4. Noun+Gen 6,682,436  64. Noun+A3pl+P1sg 54,296 

5. Noun+P3sg+Loc 6,438,347  65. Noun+A3pl+P1pl+Acc 53,859 

6. Noun+Dat 6,340,183  66. Noun+Agt+Gen 51,371 

7. Noun+A3pl 5,098,469  67. Noun+Agt+A3pl+P3sg 49,857 

8. Noun+A3pl+P3sg 4,491,411  68. Noun+P1sg+Ins 48,061 

9. Noun+With 4,023,238  69. Noun+P3sg+Equ 46,235 

10. Noun+P3sg+Dat 3,645,429  70. Noun+Acquire+Inf2 45,282 

11. Noun+P3sg+Acc 2,774,868  71. Noun+P2pl+Loc 44,990 

12. Noun+P3sg+Gen 2,553,663  72. Noun+With+P3sg 44,240 

13. Noun+A3pl+Gen 2,342,113  73. Noun+P2pl+Gen 43,554 

14. Noun+Abl 2,132,159  74. Noun+P3sg+Loc+Pres+Cop 43,306 

15. Noun+Ins 1,605,902  75. Noun+Equ 42,526 

16. Noun+P3sg+Abl 1,335,324  76. Noun+With+A3pl 40,998 

17. Noun+A3pl+Dat 1,216,820  77. Noun+A3pl+P2pl+Acc 39,804 

18. Noun+Acc 1,168,631  78. Noun+P1sg+Abl 39,737 

19. Noun+A3pl+P3sg+Acc 1,168,590  79. Noun+P3sg+Past 39,607 

20. Noun+A3pl+P3sg+Gen 1,163,978  80. Noun+Pres+A1pl 37,607 

21. Noun+A3pl+Loc 1,147,513  81. Noun+With+Ness 37,263 

22. Noun+P3sg+Ins 1,109,168  82. Noun+Acquire+Caus+Pass+Inf2+P3sg 33,980 

23. Noun+P3sg+Loc+Rel 982,105  83. Noun+A3pl+P1pl+Dat 33,974 

24. Noun+A3pl+P3sg+Dat 859,904  84. Noun+A3pl+P2pl+Dat 33,264 

25. Noun+Loc+Rel 793,974  85. Noun+A3pl+P2pl 32,857 

26. Noun+A3pl+P3sg+Loc 731,473  86. Noun+A3pl+P1sg+Acc 32,133 

27. Noun+Pres+Cop 595,410  87. Noun+Ness+P3sg+Acc 32,016 

28. Noun+A3pl+Abl 536,835  88. Noun+Ness+P3sg+Dat 31,476 

29. Noun+A3pl+Ins 526,525  89. Noun+Agt+A3pl+Dat 30,608 

30. Noun+P1sg 518,644  90. Noun+P1pl+Abl 30,273 
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31. Noun+Without 491,522  91. Noun+A3pl+Equ 29,247 

32. Noun+A3pl+P3sg+Abl 464,901  92. Noun+P3sg+Loc+Past 25,126 

33. Noun+Ness 463,592  93. Noun+Become+Inf2 24,370 

34. Noun+Agt 401,099  94. Noun+Cond 24,359 

35. Noun+P1pl 363,791  95. Noun+Ness+Dat 24,040 

36. Noun+Rel 326,758  96. Noun+Loc+Pres+Cop 24,020 

37. Noun+A3pl+P3sg+Ins 298,408  97. Noun+Become+Caus+Pass+PresPart 23,799 

38. Noun+P3sg+Pres+Cop 153,970  98. Noun+Ness+Gen 23,728 

39. Noun+P1pl+Loc 149,957  99. Noun+P3sg+Loc+Pres+A1pl 23,592 

40. Noun+P1pl+Dat 143,185  100. Noun+With+Past 23,312 

41. Noun+P2pl 140,720  101. Noun+Become+Past 21,938 

42. Noun+P1pl+Gen 138,904  102. Noun+P3sg+Loc+Pres+A1sg 21,566 

43. Noun+P1sg+Acc 124,485  103. Noun+P2sg+Dat 21,278 

44. Noun+Agt+A3pl 121,465  104. Noun+P2sg+Loc 21,165 

45. Noun+P1sg+Dat 110,737  105. Noun+Acquire+Caus+Inf1 20,534 

46. Noun+A3pl+Loc+Rel 109,199  106. Noun+Agt+Ness 20,382 

47. Noun+A3pl+P1pl 108,625  107. Noun+A3pl+P3sg+Equ 20,190 

48. Noun+Ness+P3sg 108,580  108. Noun+Acquire+Caus+Past 20,036 

49. Noun+P1pl+Acc 108,315  109. Noun+With+A3pl+Gen 19,210 

50. Noun+P1pl+Loc+Rel 105,413  110. Noun+Acquire+Caus+PresPart 18,763 

51. Noun+A3pl+P3sg+Loc+Rel 104,048  111. Noun+Acquire+Caus+Pass+PresPart 18,636 

52. Noun+Past 100,203  112. Noun+A3pl+P3sg+Pres+Cop 18,437 

53. Noun+P2pl+Acc 98,630  113. Noun+With+A3pl+P3sg 18,157 

54. Noun+P2sg 97,754  114. Noun+P3pl+Gen 17,963 

55. Noun+P1sg+Loc 94,006  115. Noun+Acquire+Inf2+P3sg 17,261 

56. Noun+A3pl+Pres+Cop 90,967  116. Noun+A3pl+P1pl+Loc 17,213 

57. Noun+P2pl+Dat 85,521  117. Noun+Acquire+PresPart 17,179 

58. Noun+With+Pres+Cop 81,112  118. Noun+Become+PresPart 17,147 

59. Noun+Agt+A3pl+Gen 75,817  119. Noun+A3pl+P1sg+Ins 17,075 

60. Noun+P1sg+Gen 71,508  120. Noun+P2sg+Acc 17,030 
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Rank Suffix template Frequency  Rank Suffix template Frequency 

121. Noun+A3pl+P1sg+Dat 16,520  161. Noun+With+Pres+A1pl 10,493 

122. Noun+P2sg+Equ 16,312  162. Noun+Become+Caus+PastPart+P3sg 10,400 

123. Noun+With+Gen 16,283  163. Noun+Acquire+Prog1 10,286 

124. Noun+With+Ness+P3sg 15,588  164. Noun+Pres+A2sg 10,070 

125. Noun+P2pl+Abl 15,526  165. Noun+Acquire+Narr 10,030 

126. Noun+P2pl+Ins 15,446  166. Noun+Acquire+Caus+Inf2+Dat 9,955 

127. Noun+P1pl+Ins 15,258  167. Noun+Ness+Abl 9,843 

128. Noun+Ness+P3sg+Gen 15,161  168. Noun+Loc+Pres+A1sg 9,843 

129. Noun+P2sg+Ins 15,068  169. Noun+Acquire+Caus+Pass+Fut 9,748 

130. Noun+Ness+P3sg+Loc 15,030  170. Noun+Without+Pres+Cop 9,732 

131. Noun+While 14,913  171. Noun+Become+Narr 9,590 

132. Noun+Agt+Dat 14,775  172. Noun+Without+A3pl 9,357 

133. Noun+Loc+Pres+A1pl 14,590  173. Noun+P2sg+Gen 9,301 

134. Noun+Loc+Past 14,587  174. Noun+Agt+A3pl+P3sg+Abl 9,275 

135. Noun+P3pl+Loc 14,389  175. Noun+Acquire+Inf1 9,225 

136. Noun+Agt+Acc 14,386  176. Noun+Acquire+ByDoingSo 9,220 

137. Noun+Become+Inf2+P3sg 14,278  177. Noun+A3pl+P1sg+Loc 9,101 

138. Noun+P1sg+Loc+Rel 14,054  178. Noun+Pres+A1sg 8,993 

139. Noun+Agt+A3pl+Abl 14,020  179. Noun+Acquire+Inf2+Dat 8,964 

140. Noun+Become+Caus+Past 13,772  180. Noun+Ness+A3pl 8,918 

141. Noun+A3pl+P1sg+Gen 13,734  181. Noun+With+Dat 8,808 

142. Noun+With+Pres+A1sg 13,655  182. Noun+Acquire+Caus+Pass+Aor 8,680 

143. Noun+Acquire+Past 13,311  183. Noun+Become+Fut 8,643 

144. Noun+P3sg+Loc+While 13,213  184. Noun+Acquire+Caus+Inf2+Loc 8,615 

145. Noun+P3sg+Pres+A1sg 13,050  185. Noun+Ness+Loc 8,613 

146. Noun+A3pl+P2pl+Gen 12,659  186. Noun+P3pl+Dat 8,478 

147. Noun+A3pl+P1pl+Abl 12,504  187. Noun+Dim 8,324 

148. Noun+Acquire+Caus+Pass+Narr 12,446  188. Noun+Gen+Pres+Cop 8,168 

149. Noun+Ness+A3pl+P3sg 12,268  189. Noun+Acquire+Caus+Pass+Past 8,155 

150. Noun+Agt+A3pl+Ins 12,197  190. Noun+With+A3pl+Dat 7,789 

151. Noun+Agt+A3pl+P3sg+Gen 12,175  191. Noun+Without+Ness 7,749 

152. Noun+A3pl+Past 12,088  192. Noun+Become+Caus+PresPart 7,726 

153. Noun+Acquire+Caus+Inf2+P3sg 11,917  193. Noun+Become+Caus+Inf1 7,596 

154. Noun+Become+Caus+Pass+Fut 11,828  194. Noun+Agt+A3pl+P3sg+Dat 7,543 

155. Noun+Narr 11,824  195. Noun+A3pl+P1sg+Abl 7,487 

156. Noun+A3pl+P1pl+Ins 11,733  196. Noun+Pres+A2pl 7,467 
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Rank Suffix template Frequency  Rank Suffix template Frequency 

157. Noun+Become+Caus+Pass+Past 11,334  197. Noun+Become+Caus+Pass+Inf2+P3sg 7,415 

158. Noun+Loc+While 10,931  198. Noun+With+Ness+P3sg+Acc 7,327 

159. Noun+Agt+P1sg 10,695  199. Noun+With+Pres+A2sg 7,301 

160. Noun+P2pl+Loc+Rel 10,681  200. Noun+Loc+Rel+A3pl 7,232 
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APPENDIX I 

NON-WORD STIMULI USED IN EXPERIMENT 1 

 

STIMULUS SET 1 STIMULUS SET 2 

Wuggy Wuggy+suffix Random Wuggy Wuggy+suffix Random 

mene kusesiz çöiyş fekotan kürütlük hdggıüok 

tezt gırganlı möpty fordat estlitalık bbmp 

netaet pasagınçlı jıvr febne kürazarlık gtyjorg 

konze mümabazıcı nrk kiliz keneylli şchglsho 

filovüs gerükçü kçhcpku danak meznuplu lüiçaa 

fentre civetmek mügvg maşen layılı apgm 

sıragra kazonsuz jhgv cara ütuybacı gypbdj 

cata şimlik kjounk aşbe ahrörcü öpfcimf 

telyih goraflık saio tese çödancı tsaaivb 

itrah yıltozmak prfd halla famocasız üemsc 

koltekt gosınlık afeucsof teşkuraf ifriksiz çicrğ 

uyta yırahursuz üld kireyar pahşassız yhnjcgk 

buban ankleçocu rehcö nüt teşsemek tmuç 

bantü sarbuçlu ütıek ıbek teşritemek jeö 

roçle zaşutmak ratfndgblö gaya bemenmek şıcjc 
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APPENDIX J 

REAL-WORD STIMULI USED IN EXPERIMENT 1 

STIMULUS SET 1 STIMULUS SET 2 

Low Frequency High Frequency Low Frequency High Frequency 

lokma duman amfi komisyon 

münazara hamam kement model 

paranoya marka ütopya yastık 

çim tel basen damar 

bando sınav yel iplik 

ozan yıldız pala teknoloji 

yorgan kanun tekke aktör 

tespih motor entrika desen 

pire travma akçe darbe 

ülser cam kiriş fırsat 

gravür israf şehzade lise 

olta öfke külot kavga 

sarnıç çete fitne telgraf 

lama tepki kravat mezhep 

teyp enfeksiyon şemsiye tüccar 

yosun kokteyl meze tehlike 

ruble küme çıban bel 

antrepo cemaat paçavra maraton 

filozof damat çıra ağrı 

peruk niyet iblis ışık 

sivilce bellek yayla fosil 

bere pasaport fenomen dava 

korse müze paspas cadı 

zabıt filtre kiremit not 

küpe çorap apse fatura 
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APPENDIX K 

THREE SETS OF NOUN ROOTS USED IN EXPERIMENT 2 

 

Animals Plants Tools 

Turkish English Turkish English Turkish English 

ahtapot octopus şeftali peach törpü nail-file 

akrep scorpion avokado avocado poşet bag 

antilop antelope bezelye greenpeas zincir chain 

bülbül nightingale buğday wheat battaniye blanket 

bıldırcın quail domates tomato kereste lumber 

civciv chick fıstık pistachio pergel compass (drawing) 

gergedan rhino fasulye beans gönye set-square 

goril gorilla ıspanak spinach kerpeten pliers 

jaguar jaguar kaktüs cactus tornavida screwdriver 

kelebek butterfly kayısı apricot kiremit roof tile 

köstebek mole lahana cabbage zımba stapler 

kanguru kangaroo maydanoz parsley cetvel ruler 

kunduz beaver mercimek lentils defter notebook 

kurbağa frog nohut chickpeas iskemle chair 

leopar leopard pırasa leek sehpa coffee-table 

orangutan orangutan patates potato anahtar key 

porsuk badger patlıcan eggplant cüzdan wallet 

salyangoz snail portakal orange telefon telephone 

serçe sparrow zencefil ginger pusula compass (navigation) 

penguen penguin zeytin olives sürahi jug 
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APPENDIX L 

SUFFIX TEMPLATES, WORD-FORMS AND NON-WORDS USED IN 

EXPERIMENT 2 

 

SUFFIX TEMPLATE COND. ANIMALS PLANTS TOOLS 

+P3sg+Pres+A1pl HIGH ahtapotuyuz domatesiyiz defteriyiz 

+Acquire+ByDoingSo HIGH kunduzlanarak kaktüslenerek cüzdanlanarak 

+Acquire+Inf2+Dat HIGH porsuklanmaya zencefillenmeye telefonlanmaya 

+Loc+Pres+A1sg HIGH köstebekteyim kayısıdayım kerestedeyim 

+Become+Caus+Past HIGH gergedanlaştırdı ıspanaklaştırdı battaniyeleştirdi 

+Pres+A1pl HIGH orangutanız mercimeğiz pergeliz 

+A3pl+P1sg+Abl HIGH serçelerimden fasulyelerimden iskemlelerimden 

+P3sg+Equ HIGH kurbağasınca bezelyesince zımbasınca 

+A3pl+P2pl+Abl HIGH salyangozlarınızdan zeytinlerinizden törpülerinizden 

+P3sg+Loc+While HIGH kangurusundayken şeftalisindeyken pusulasındayken 

+Acquire+Inf2+Gen HIGH jaguarlanmanın lahanalanmanın sürahilenmenin 

+P2pl+Abl HIGH akrebinizden portakalınızdan anahtarınızdan 

+Become+Inf2+Dat HIGH antiloplaşmaya maydanozlaşmaya kerpetenleşmeye 

+Acquire+Caus+ByDoingSo HIGH gorillendirerek nohutlandırarak sehpalandırarak 

+Pres+Cop+A3pl HIGH kelebektirler pırasadırlar zincirdirler 

+A3pl+P2pl+Gen HIGH penguenlerinizin avokadolarınızın cetvellerinizin 

+A3pl+Past HIGH bülbüllerdi patlıcanlardı gönyelerdi 

+P1sg+Equ HIGH civcivimce patatesimce poşetimce 

+P2sg+Ins HIGH leoparınla fıstığınla kiremitinle 

+Acquire+Caus+Inf1 HIGH bıldırcınlandırmak buğdaylandırmak tornavidalandırmak 

+A3pl+Narr LOW serçelermiş avokadolarmış zincirlermiş 

+Acquire+Inf2+Abl LOW kunduzlanmadan kaktüslenmeden kiremitlenmeden 

+Become+Inf1 LOW gergedanlaşmak ıspanaklaşmak kerpetenleşmek 

+Gen+Pron+Rel+Abl LOW bülbülünkinden patlıcanınkinden tornavidanınkinden 

+Past+A3pl LOW penguendiler kayısıydılar pergeldiler 

+P3sg+While LOW kurbağasıyken şeftalisiyken pusulasıyken 

+Acquire+Pass+Past LOW jaguarlanıldı nohutlanıldı cüzdanlanıldı 
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+P1sg+Past LOW porsuğumdu fıstığımdı anahtarımdı 

+P2pl+Equ LOW akrebinizce patatesinizce törpünüzce 

+Become+Caus+AfterDoingSo LOW antiloplaştırıp zencefilleştirip battaniyeleştirip 

+Acquire+Pass+Aor LOW bıldırcınlanılır lahanalanılır telefonlanılır 

+P2pl+Pres+A1sg LOW salyangozunuzum mercimeğinizim poşetinizim 

+Become+ByDoingSo LOW civcivleşerek buğdaylaşarak sürahileşerek 

+Loc+Adj+Rel+Abl LOW orangutandakinden zeytindekinden iskemledekinden 

+Dat+Pres+Cop LOW kelebeğedir pırasayadır defteredir 

+Become+Aor+While LOW gorilleşirken maydanozlaşırken sehpalaşırken 

+Loc+Pres+A2pl LOW köstebektesiniz portakaldasınız kerestedesiniz 

+A3pl+P2sg+Ins LOW leoparlarınla fasulyelerinle cetvellerinle 

+P3sg+Loc+Narr LOW kangurusundaymış domatesindeymiş zımbasındaymış 

+P3sg+Pres+A2sg LOW ahtapotusun bezelyesisin gönyesisin 

 HNW1 ahtazonüyif tomanesimıf değleriyul 

 HNW1 kınsolmanalak kasyuzleneray lolbanmanarak 

 HNW1 porlürlatmara kayusıgamif keressegemız 

 HNW1 körtebalgeyif merfimefal yerçelil 

 HNW1 senyelerisnan favekselerifçen ilhurlelerircen 

 HNW2 orangutanıf şeftalifindeykan zımbasısya 

 HNW2 jaguargancanin maydanozranlası sürahituyrenin 

 HNW2 antilopranlası pırasavirlas sehpalasyırabak 

 HNW2 leoparirma avokadolericizat gönyeliryi 

 HNW2 bıldırcınganfirmaş patlıcantismı poşetakte 

 HNW3 aşdebinizden beduryesince celefırlanmaya 

 HNW3 kelesaldırlar yahatalanmanın nastülerinizden 

 HNW3 gansienlerinizin siltakalınızdan anortanınızdan 

 HNW3 bülpıklardı cuvetlendirerek kinpetirleşmeye 

 HNW3 kelesallarlec bunrehlendirmek celhurlarınızın 

 LNW1 serfelennış kasyuzlenmeven perdumbiler 

 LNW1 kındünmatgadan kakıdulkılas loğdanlanulmı 

 LNW1 pornuğezku miksimehinibam ilhurledekifçen 

 LNW1 kistemorfesitiz favekkeleyesre deşlerezır 
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 LNW1 attazonuvin somateğincazmif kenustekaginif 

 LNW2 jaguarpanıkfı avokadolercıs poşetimivaz 

 LNW2 antilopganlısıs patlıcanünmindel sürahitevekak 

 LNW2 bıldırcınganıluf şeftalisitban sehpalaşırfan 

 LNW2 orangutanfadingen pırasayazir zımbasündakmıl 

 LNW2 leoparsariyka maydanozdabarcen gönyesuvin 

 LNW3 pülpığınkinden cuvetlenildi kinpetirleşmek 

 LNW3 gansiendiler yahatalanılır anortanımdı 

 LNW3 aşdebinizce bunrehleşerek nastünüzce 

 LNW3 naçgivleşerek siltakaldasınız celefırlanılır 

 LNW3 kelesaladır beduryesisin celhurlarınla 
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APPENDIX M 

INSTRUCTIONS USED IN EXPERIMENT 2 

 

Turkish: “Ekranın ortasında önce bir * işareti, sonra da yanyana 10-

15 harf göreceksiniz. Bu harflerin (ne kadar tuhaf ve uzun da olsa) 

Türkçe bir kelime olup olamayacağına karar vermeniz gerekiyor. 

Örneğin ‘bilgilendirmeliyiz’ ve ‘ağaçlandırmalıyız’ gayet 

mantıklı ve ara sıra kullanılabilecek kelimeler. Oysa tam aynı 

yapıda olan ‘orangutanlandırmalıyız’ son derece tuhaf bir kelime. 

Ama yine de Türkçenin kök-ek birleşim kurallarına uygun, ve 

mecbur kalınırsa kullanılabilecek bir kelime. Yani sonuçta böyle 

bir kelime imkansız değil. Öte yandan ‘yengeçasdfasfd’ veya 

‘asfdasdflendirmeliyiz’ Türkçe birer kelime değil, hiçbir şart 

altında da olamaz. 

İşte sizden neyin kelime olduğuna, neyin kelime olmadığına 

bu şekilde karar vermenizi istiyoruz. Ekranda gördüğünüz şey (çok 

uzun ve tuhaf da olsa) bir kelime ise “2” tuşuna, tamamen imkansız 

bir harf yığını ise "9" tuşuna basın. 

Deney, sabrınızı zorlamamak için sadece 70 kelimeden 

oluşuyor ve genellikle 5-6 dakika sürüyor. 10 kelimelik alıştırmaya 

başlamak için lütfen herhangi bir tuşa basın.” 

 

English: “In the middle of the screen, you will first see an asterisk 

(*) and then a string of 10-15 letters. You must decide whether or 

not this letter string can be a Turkish word (even if a very strange 

and long one). 

For instance, bilgilendirmeliyiz ‘we should inform’ and 

ağaçlandırmalıyız ‘we should plant (trees)’ are perfectly logical 

words that can be used from time to time. However, the identically 

formed orangutanlandırmalıyız ‘we should orangutanize’ is an 

extremely strange word. Still, it is a valid word that complies with 

the root-suffix combination rules of Turkish, and can be used when 

the need arises. In other words, such a word is not impossible. On 

the other hand, orangutanasdfasfd ‘orangutanasdfasfd’ or 

asfdasdflendirmeliyiz ‘we should asfdasdf’ are not Turkish words, 

and can never be. 

This is how you should decide if a string is a possible word or 

not. Please press “2” if what you see can be a word (even if a very 

long and strange one), and press “9” if it’s a completely impossible 

bunch of letters. 

To avoid testing your patience, we have limited the 

experiment to only 70 words. It usually takes 5-6 minutes to finish. 

Please press any key to start the 10-word training section.” 
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APPENDIX N 

DESCRIPTIVE STATISTICS FOR EXPERIMENT 1 

 

Descriptive Statistics for Version 1 of Experiment 1 

(n = 48) LOW HIGH WUGGY SUFFIX RANDOM 

Mean 668 615 809 823 635 

Standard Error 15,93 14,75 27,66 27,02 16,34 

Median 660 589 810 786 608 

Standard Deviation 110,37 102,24 191,63 187,26 113,21 

Kurtosis -0,0007 -0,5251 0,1424 -0,1468 -0,0546 

Skewness 0,6892 0,5928 0,7470 0,7126 0,5930 

Minimum 488 450 554 576 448 

Maximum 945 862 1376 1326 964 

 

Descriptive Statistics for Version 2 of Experiment 1 

(n = 79) LOW HIGH WUGGY SUFFIX RANDOM 

Mean 662 607 758 801 626 

Standard Error 12,16 12,00 16,55 20,88 11,97 

Median 636 592 710 746 597 

Standard Deviation 108,10 106,67 147,12 185,55 106,42 

Kurtosis 0,53 2,47 0,37 1,06 0,53 

Skewness 0,87 1,28 0,99 1,14 0,94 

Minimum 458 420 544 515 463 

Maximum 953 1007 1184 1399 934 
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Descriptive Statistics for Version 3 of Experiment 1 

(n = 54) LOW HIGH WUGGY SUFFIX RANDOM 

Mean 684 618 838 910 643 

Standard Error 13,23 11,10 19,91 26,57 13,73 

Median 681 613 824 896 620 

Standard Deviation 97,21 81,56 146,28 195,25 100,92 

Kurtosis 0,01 -0,29 -0,70 -0,81 1,10 

Skewness 0,45 0,51 0,27 0,40 1,19 

Minimum 478 469 571 633 492 

Maximum 929 806 1153 1387 924 

 

Descriptive Statistics for Version 4 of Experiment 1 

(n = 53) LOW HIGH WUGGY SUFFIX RANDOM 

Mean 693 632 849 917 644 

Standard Error 14,44 14,12 22,60 31,09 14,82 

Median 691 598 842 900 623 

Standard Deviation 105,15 102,77 164,55 226,31 107,86 

Kurtosis -0,69 -0,79 -0,65 -0,40 0,79 

Skewness 0,21 0,25 0,53 0,71 0,96 

Minimum 488 416 606 612 473 

Maximum 903 826 1225 1466 947 
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Descriptive Statistics for Version 5 of Experiment 1 

(n = 63) LOW HIGH WUGGY SUFFIX RANDOM 

Mean 

682 631 801 848 646 

Standard Error 

14,94 13,78 21,52 23,15 15,73 

Median 

663 603 768 810 621 

Standard Deviation 

118,56 109,39 170,84 183,73 124,83 

Kurtosis 

0,42 1,46 0,60 -0,35 0,65 

Skewness 

0,84 1,20 0,92 0,79 0,95 

Minimum 

479 460 547 565 435 

Maximum 

1027 982 1336 1292 1040 

 

Descriptive Statistics for Version 6 of Experiment 1 

(n = 47) LOW HIGH WUGGY SUFFIX RANDOM 

Mean 

649 604 799 849 642 

Standard Error 

14,57 13,38 23,51 26,48 17,08 

Median 

639 585 778 827 634 

Standard Deviation 

99,89 91,71 161,20 181,56 117,07 

Kurtosis 

1,38 0,52 -0,48 -0,77 0,85 

Skewness 

0,99 0,80 0,45 0,38 0,78 

Minimum 

500 459 544 567 428 

Maximum 

988 881 1158 1245 1004 
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Descriptive Statistics for Version 7 of Experiment 1 

(n = 61) LOW HIGH WUGGY SUFFIX RANDOM 

Mean 

691 634 836 894 640 

Standard Error 

15,68 14,37 24,42 28,60 14,43 

Median 

675 622 803 852 631 

Standard Deviation 

122,45 112,26 190,71 223,41 112,67 

Kurtosis 

-0,24 0,03 0,81 -0,59 -0,05 

Skewness 

0,60 0,55 0,92 0,49 0,42 

Minimum 

469 426 486 493 386 

Maximum 

1007 925 1382 1405 929 

 

Descriptive Statistics for Version 8 of Experiment 1 

(n = 50) LOW HIGH WUGGY SUFFIX RANDOM 

Mean 

673 611 808 859 627 

Standard Error 

15,05 12,48 17,38 22,12 13,10 

Median 

648,5 597 782 835,5 600,5 

Standard Deviation 

106,41 88,22 122,93 156,38 92,67 

Kurtosis 

0,43 -0,20 0,64 0,13 0,18 

Skewness 

0,94 0,57 1,00 0,89 0,78 

Minimum 

528 447 630 641 495 

Maximum 

982 831 1175 1268 893 
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APPENDIX O 

DESCRIPTIVE STATISTICS FOR EXPERIMENT 2 

 

 

Descriptive Statistics for Version 1 of Experiment 2 

(n = 119) HIGH LOW PP RP PR 

Mean 

1238 1305 1396 1485 1294 

Standard Error 

35,06 35,17 44,62 40,67 40,69 

Median 

1201 1330 1378 1423 1214 

Standard Deviation 

382,53 383,75 486,83 443,68 443,98 

Kurtosis 

-0,68 -0,68 -0,89 -0,63 0,51 

Skewness 

0,40 0,15 0,33 0,25 0,89 

Minimum 

573 548 594 650 604 

Maximum 

2100 2164 2445 2545 2682 

 

Descriptive Statistics for Version 2 of Experiment 2 

(n = 109) HIGH LOW PP RP PR 

Mean 

1196 1272 1341 1447 1266 

Standard Error 

29,26 30,44 36,87 33,62 35,25 

Median 

1171 1239 1338 1431 1272 

Standard Deviation 

305,55 317,90 385,00 351,07 368,10 

Kurtosis 

-0,45 -0,52 -0,61 -0,67 -0,06 

Skewness 

0,36 0,30 0,25 0,02 0,48 

Minimum 

613 643 661 699 648 

Maximum 

2028 2020 2204 2247 2432 
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Descriptive Statistics for Version 3 of Experiment 2 

(n = 144) HIGH LOW PP RP PR 

Mean 

1145 1218 1318 1463 1386 

Standard Error 

26,45 27,75 35,66 33,95 35,01 

Median 

1116 1201,5 1256 1434,5 1350,5 

Standard Deviation 

317,49 333,11 428,03 407,45 420,18 

Kurtosis 

0,13 -0,34 -0,71 -0,56 -0,83 

Skewness 

0,53 0,16 0,38 0,20 0,29 

Minimum 

519 518 594 603 642 

Maximum 

2139 2087 2401 2554 2340 

 

Descriptive Statistics for Version 4 of Experiment 2 

(n = 114) HIGH LOW PP RP PR 

Mean 

1251 1300 1392 1546 1433 

Standard Error 

32,53 32,15 41,59 39,03 41,17 

Median 

1190 1286 1370 1560 1388,5 

Standard Deviation 

347,41 343,34 444,10 416,76 439,65 

Kurtosis 

-0,54 -0,57 -0,18 -0,98 -0,50 

Skewness 

0,49 0,38 0,55 0,07 0,48 

Minimum 

684 677 605 755 702 

Maximum 

2134 2195 2558 2350 2561 
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Descriptive Statistics for Version 5 of Experiment 2 

(n = 98) HIGH LOW PP RP PR 

Mean 

1327 1375 1382 1579 1547 

Standard Error 

39,88 38,10 44,79 45,57 50,15 

Median 

1262 1311,5 1302 1566 1513,5 

Standard Deviation 

394,85 377,20 443,49 451,20 496,48 

Kurtosis 

-0,45 -0,61 -0,44 -0,63 -0,82 

Skewness 

0,42 0,23 0,50 0,11 0,27 

Minimum 

611 589 631 645 642 

Maximum 

2315 2229 2543 2599 2737 

 

Descriptive Statistics for Version 6 of Experiment 2 

(n = 109) HIGH LOW PP RP PR 

Mean 

1139 1215 1228 1436 1395 

Standard Error 

31,00 33,68 41,78 44,15 42,94 

Median 

1092 1203 1131 1418 1325 

Standard Deviation 

323,65 351,66 436,22 460,95 448,37 

Kurtosis 

-0,24 -0,69 -0,01 -0,15 -0,68 

Skewness 

0,58 0,36 0,78 0,53 0,51 

Minimum 

602 621 569 683 677 

Maximum 

2104 1981 2562 2886 2471 
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Descriptive Statistics for Version 7 of Experiment 2 

(n = 101) HIGH LOW PP RP PR 

Mean 

1327 1370 1520 1556 1405 

Standard Error 

35,64 36,86 49,07 44,56 46,99 

Median 

1348 1398 1457 1527 1386 

Standard Deviation 

358,19 370,50 493,15 447,86 472,28 

Kurtosis 

-0,65 -0,96 -1,10 -0,90 -0,65 

Skewness 

0,17 0,03 0,17 0,05 0,39 

Minimum 

653 652 676 688 671 

Maximum 

2272 2106 2549 2582 2582 

 

Descriptive Statistics for Version 8 of Experiment 2 

(n = 134) HIGH LOW PP RP PR 

Mean 

1301 1365 1512 1546 1353 

Standard Error 

28,33 30,18 40,69 35,62 35,83 

Median 

1297 1358,5 1499,5 1535 1313 

Standard Deviation 

328,00 349,37 471,05 412,36 414,82 

Kurtosis 

-0,55 -0,92 -0,12 -0,75 -0,43 

Skewness 

0,28 0,10 0,46 0,18 0,39 

Minimum 

713 657 692 781 637 

Maximum 

2160 2148 2937 2543 2636 
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Descriptive Statistics for Version 9 of Experiment 2 

(n = 116) HIGH LOW PP RP PR 

Mean 

1204 1254 1414 1565 1478 

Standard Error 

29,45 30,35 40,57 39,24 40,98 

Median 

1184 1280 1384 1591,5 1453 

Standard Deviation 

317,19 326,89 436,95 422,73 441,36 

Kurtosis 

0,04 0,15 -0,87 -0,78 -0,67 

Skewness 

0,37 0,39 0,22 0,10 0,27 

Minimum 

629 627 652 789 734 

Maximum 

2215 2337 2495 2632 2794 

 

Descriptive Statistics for Version 10 of Experiment 2 

(n = 112) HIGH LOW PP RP PR 

Mean 

1280 1342 1461 1681 1562 

Standard Error 

25,03 24,56 34,44 33,51 33,50 

Median 

1263 1344 1482 1736 1532 

Standard Deviation 

264,90 259,88 364,52 354,62 354,56 

Kurtosis 

-0,26 0,19 -0,44 -0,37 -0,61 

Skewness 

0,34 0,23 0,16 -0,31 0,35 

Minimum 

735 753 712 869 837 

Maximum 

2054 2113 2405 2455 2395 
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Descriptive Statistics for Version 11 of Experiment 2 

(n = 101) HIGH LOW PP RP PR 

Mean 

1330 1401 1384 1556 1530 

Standard Error 

30,05 29,88 39,18 38,49 38,30 

Median 

1299 1356 1290 1499 1535 

Standard Deviation 

301,96 300,31 393,74 386,86 384,91 

Kurtosis 

-0,68 -0,67 -0,76 -0,22 -0,97 

Skewness 

0,39 0,23 0,43 0,47 0,24 

Minimum 

831 882 715 816 806 

Maximum 

2034 2075 2225 2695 2471 

 

Descriptive Statistics for Version 12 of Experiment 2 

(n = 90) HIGH LOW PP RP PR 

Mean 

1375 1446 1446 1576 1546 

Standard Error 

40,47 40,77 47,24 42,57 48,34 

Median 

1372 1445 1387 1604 1563 

Standard Deviation 

383,89 386,74 448,13 403,90 458,60 

Kurtosis 

-0,02 -0,46 -0,86 -0,85 -0,95 

Skewness 

0,51 0,14 0,21 -0,25 0,08 

Minimum 

731 665 652 685 767 

Maximum 

2401 2326 2408 2349 2588 
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